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Sparsity

Addressing high-dimensional problems is a central challenge in modern

statistics.

Statisticians have developed lots of tools:

Shrinkage: L2 penalty.

Selection for sparse models: L1 penalty.

Usually, we assume that the underlying signal is sparse, and advanced

methods are designed to recover such signals effectively.

However, a less frequently explored question arises: Are asset pricing

models inherently sparse?
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Motivation: Illusion of Sparsity

Giannone, Lenza, and Primiceri (2021) propose a Bayesian sparse model

that parametrizes the level of sparsity.

They examine various types of economic data, including:

Macro: Monthly growth rate of U.S. industrial production / GDP.

Finance: S&P 500 equity premium / stock returns of U.S. firms.

Micro: Crime rate per capita / the number of pro-plaintiff eminent domain

decisions.

Their findings show that the posterior distribution does not typically

concentrate on a single sparse model.

This phenomenon highlights an illusion of sparsity in economic data.

They did not emphasize factors.
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Evidence from Asset Pricing

The asset pricing literature provides some evidence

Kozak, Nagel, and Santosh (2020) demonstrate that a

characteristics-sparse stochastic discount factor (SDF) cannot explain the

cross-section of returns.

Kozak and Nagel (2023) show that factors derived from characteristics

through sorting, characteristic weighting, or OLS cross-sectional regression

slopes do not span the stochastic discount factor (SDF) unless a large

number of characteristics are used simultaneously.

Shen and Xiu (2024) prove that when signals are weak, ridge regression

outperforms Lasso for prediction.

Equivalently, the predictive model might not be sparse.
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Research Questions

We investigate sparsity within the framework of the Characteristics-based

Factor Model:

Kelly, Pruitt, and Su (2019) introduce observable characteristics as

instruments for loadings on latent factors by Instrumented Principal

Component Analysis (IPCA).

We examine whether the results exhibit sparsity in the context of latent

factor models.

Our Contribution:

Econometric Solution:

We propose a novel Bayesian sparse latent conditional factor model.

Focus of Analysis:

We study the sparsity level of firm characteristics when estimating a

conditional latent factor model.
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Core Notation: q

Spike-and-slab prior (Mitchell and Beauchamp, 1988; George and McCulloch,

1993), a Bayesian variable selection prior.P(β ̸= 0) = q

P(β = 0) = 1− P(β ̸= 0) = 1− q

β =

N
(
0, γ2

)
with prob q The regressor is chosen.

0 with prob 1− q The regressor is not chosen.
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Key Current Results

Under different prior means of q, i.e., p(βi ̸= 0), and 4 latent factors, the

in-sample posterior mean of q is in the range [0.65, 0.75], i.e., we choose

about 70% characteristics and their interaction with latent factors in the

model.

Preliminary results. More yet to come.
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The Full Model

ri,t = µ(zi,t−1) + β(zi,t−1)ft + ϵi,t (1)

where µ(zi,t−1) = µ0 + µ1zi,t−1

β(zi,t−1) = β0 + β1(IK ⊗ zi,t−1), ϵi,t ∼ N
(
0, σ2

i

)
ri,t : return of asset i at time t

ft : K latent factors

zi,t−1: vector, L firm characteristics for asset i at time t − 1

Plugging the dynamics of µ and β into Model (1):

ri,t = µ0 + µ1zi,t−1 + β0ft + β1[ft ⊗ zi,t−1] + ϵi,t . (2)
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Sparse BayesIPCA Model

ri,t = µ0 + µ1zi,t−1 + β0ft + β1[ft ⊗ zi,t−1] + ϵi,t .

We assume independent spike-and-slab priors on the regression coefficient

Giannone, Lenza, and Primiceri (2021).

µ1,β1
iid∼

N
(
0, γ2

)
with prob q

0 with prob 1− q,

γ2 ∼ IG(A/2,B/2)

µ0,β0
iid∼ N

(
0, ξ2

)
, ξ2 ∼ IG(C/2,D/2)

q ∼ Beta(a, b), or, q = qfixed

where µ1 = [µ1,l ]1≤l≤L and β1 = [β1,l,k ]1≤l≤L,1≤k≤K .
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Model comparison via marginal likelihood

Follow the framework of Barillas and Shanken (2018), Chib, Zeng, and

Zhao (2020), comparing different settings by marginal likelihood.

Marginal likelihood integrates out parameters from the likelihood a priori,

addresses parameter uncertainty, and offers regularization of dimension

implicitly.

Different settings for q:

i Draw q from the Beta dist. The prior means of q is set to 0.1, 0.5 and 0.9.

ii Fixed q at 0.1, 0.5 and 0.9. (Investor perspective)

Noted that the inverstor believes the sparsity level should be fixed at some

values ̸= the estimated model would have the same sparisy level.

Numerical calculate from Gibbs samples, following Chib (1995).
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Simulation

Data Generate Process:

µ0,µ1,β0,β1 ∼ N
(
0, γ2

)
, where γ2 ∼ IG (20/2, 1/2)

ft ∼ N
(
0, 0.252

)
Generate expected return by using 5 calibrated chars and 3 factors:

E[ri,t ] = µ0 + µ1zi,t−1 + β0ft + β1[ft ⊗ zi,t−1]

Use Signal-to-Noise Ratio (= 1) to calibrate the return and obtain ri,t .
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Simulation

Our method can identify the useful (“true”) characteristics.
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Current Empirical Findings

Dataset

In-sample performance

BayesIPCA and IPCA

BayesIPCA: Test alpha

Sparse BayesIPCA

Is there sparsity?

Time-varying sparsity
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Dataset

360 bi-sorted portfolios, from Jan-1980 to Dec-2023, monthly.

1980-2023 monthly observations of U.S. stocks.

20 zi,t firm characteristics (Will be expanded to 60).
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BayesIPCA and IPCA

BayesIPCA has a similar pricing performance as IPCA

Number of factor

1 2 3 4 5

Panel A. Total R2

IPCA 50.29 69.84 78.43 81.04 82.11

BIPCA 48.94 68.40 77.57 80.20 81.25

Panel B. Pred. R2

IPCA 0.39 0.28 0.21 0.24 0.24

BIPCA 0.38 0.24 0.17 0.17 0.20

Panel C. CS R2

IPCA 39.86 51.99 57.05 61.14 62.55

BIPCA 41.37 49.04 48.32 56.93 56.89

Panel D. TP. Sp

IPCA 0.36 0.38 0.79 0.95 0.96

BIPCA 0.38 0.48 0.75 0.98 0.98

Panel E. Uni. Sp

IPCA 0.36 0.06 0.51 0.14 0.14

BIPCA 0.38 0.27 0.49 0.36 0.15

Benchmark: MktRf.
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BayesIPCA: Test alpha

ri,t = µ0 + µ1zi,t−1︸ ︷︷ ︸
µ(zi,t−1)

+β0ft + β1[ft ⊗ zi,t−1]︸ ︷︷ ︸
β(zi,t−1)ft

+ϵi,t .

Test1: Test each µ0, µ1,i , i = 1, . . . , L

Test2: GRS test Gibbons, Ross, and Shanken (1989) on (µ0,µ1).

For the in-sample case, K (the number of factors) from 1 to 5, we

reject the null hypothesis µi = 0 in Test1

reject the null hypothesis µ = 0 in Test2

⇒ There exist some components of returns that cannot be explained by

common latent factors and/or characteristics.
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Sparse BayesIPCA: Is there sparsity?
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Sparse BayesIPCA: Is there sparsity?

Number of factor Number of factor

1 2 3 4 1 2 3 4

Panel A. Total R2

q prior 0.1 48.94 68.39 77.56 80.16 q = 0.1 48.92 68.39 77.55 80.14

q prior 0.5 48.94 68.39 77.56 80.17 q = 0.5 48.94 68.39 77.56 80.16

q prior 0.9 48.94 68.39 77.56 80.17 q = 0.9 48.94 68.39 77.57 80.18

Panel B. Pred. R2

q prior 0.1 0.38 0.22 0.18 0.16 q = 0.1 0.38 0.22 0.17 0.15

q prior 0.5 0.38 0.22 0.18 0.16 q = 0.5 0.38 0.22 0.17 0.16

q prior 0.9 0.38 0.22 0.18 0.16 q = 0.9 0.38 0.22 0.18 0.16

Panel C. CS R2

q prior 0.1 41.71 51.40 46.65 53.83 q = 0.1 42.46 50.94 46.22 53.95

q prior 0.5 41.59 51.45 46.68 53.89 q = 0.5 42.24 51.26 46.54 53.68

q prior 0.9 41.46 51.52 46.66 53.92 q = 0.9 41.46 51.59 46.80 54.34

Panel D. TP. Sp

q prior 0.1 0.39 0.51 0.80 1.03 q = 0.1 0.39 0.51 0.79 1.02

q prior 0.5 0.39 0.51 0.81 1.03 q = 0.5 0.39 0.51 0.80 1.03

q prior 0.9 0.38 0.51 0.81 1.03 q = 0.9 0.39 0.50 0.81 1.02

Panel E. Uni. Sp

q prior 0.1 0.39 0.32 0.52 0.33 q = 0.1 0.39 0.32 0.51 0.32

q prior 0.5 0.39 0.32 0.52 0.33 q = 0.5 0.39 0.32 0.51 0.32

q prior 0.9 0.38 0.31 0.52 0.33 q = 0.9 0.39 0.30 0.52 0.31

Benchmark: MktRf.
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Another Perspective: Construct Sparse Models

For all possible combinations when select i chars. from 20 chars:

select max(200,C i
20) combs., calculate Total R2, and take the average.

Average in-sample total R2 (%) by different combs. of chars. (IPCA)
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Time-Varying Sparsity
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Summary

An important research problem: Are the asset pricing models sparse?

A new approach, the BayesIPCA Model, combines the Bayesian framework of

factor estimation and the characteristics-based model (IPCA).

An important extension for considering the spike-and-slab prior while

estimating the conditional latent factor model.

Based on our method, we can identify:

The whole sparsity level of the asset-pricing model

(during the whole period / specific regimes)

The importance of each characteristic

(during the whole period / specific regimes)

· · · The redundancy of the test assets
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Thank you!



Technical details



Evaluation Measures

Total R2 = 1−
∑N

i=1

∑Ti
t=1 (ri,t − r̂i,t)

2∑N
i=1

∑Ti
t=1(ri,t −MktRFt)2

,

where r̂i,t = µ̂(zi,t−1) + β̂(zi,t−1)ft .

Predictive R2 = 1−
∑N

i=1

∑Ti
t=1 (ri,t − r̂i,t)

2∑N
i=1

∑Ti
t=1(ri,t − λMktRF)2

,

where r̂i,t = µ̂(zi,t−1) + β̂(zi,t−1)λf , λf is the factor risk premia estimate, and

λMktRF is the mean of market excess return.

Cross-Sectional R2 = 1−

∑N
i=1

(
1
Ti

∑Ti
t=1(ri,t − r̂i,t)

)2

∑N
i=1

(
1
Ti

∑Ti
t=1 ri,t −MktRFt

)2 ,

where r̂i,t = µ̂(zi,t−1) + β̂(zi,t−1)ft .



APT factors

f (R | α,β,Σ) =

∫
f ∗(R, f | α,β,Σ)df



Gibbs Sampler

The full posterior is

likelihood
N∏
i=1

( 1

2πσ2
i

) Ti
2

exp

(
−

1

2σ2
i

(Ri − WiΓ)
⊤ (Ri − WiΓ)

)
prior on µ1 ×

L∏
l=1

[(
1

2πγ2

) 1
2
exp

(
−

µ2
1,l

2γ2

)]z
µ
l

[δ(µ1,l )]
1−z

µ
l

prior on β1 ×
L∏

l=1

K∏
k=1

[(
1

2πγ2

) 1
2
exp

(
−

β2
1,l,k

2γ2

)]z
β
l,k

[δ(β1,l,k )]
1−z

β
l,k

prior on µ0,β0 ×
[(

1

2πξ2

) 1
2
exp

(
−

µ2
0

2ξ2

)]
×

L∏
l=1

[(
1

2πξ2

) 1
2
exp

(
−

β2
0,l

2ξ2

)]

prior on zµ, zβ , q ×
[

L∏
l=1

qz
µ
l (1 − q)1−z

µ
l

]
×
[

L∏
l=1

K∏
k=1

q
z
β
l,k (1 − q)

1−z
β
l,k

]
×

Γ(a + b)

Γ(a)Γ(b)
qa−1(1 − q)b−1

prior on σ
2
i , γ

2 ×
N∏
i=1

(σ2
i )

− v0
2

−1 exp

(
−

S0

2σ2
i

)
×

(B/2)A/2

Γ(A/2)
(γ2)−A/2−1 exp

(
−

B

2γ2

)

prior on ξ
2 ×

(D/2)C/2

Γ(C/2)
(ξ2)−C/2−1 exp

(
−

D

2ξ2

)



Gibbs Sampler

For BayesIPCA-sparsity case:

Sample p(Γ̃ | z , σ2
i , γ

2, ξ2)

Sample p(σ2
i | z , Γ̃)

Sample p(z | σ2
i , γ

2, ξ2, q)

Sample p(γ2 | z , µ̃1, β̃1)

Sample p(q | z)

Sample p(ξ2 | µ0,β0)

where Γ̃ =
(
µ0, µ̃1,β0, β̃1

)
, ˜ means the selected variables.



Review: Bayesian APT (Arbitrage Pricing Theory) Factor Model

Geweke and Zhou (1996)

rt = µ+ βft + ϵt

rt = (r1,t , · · · , rN,t): a vector of returns of N asset at time t

µ = E[rt ], the expected return on asset.

“pervasive” factor assumptions:

E[ft ] = 0, E[ft f ′t ] = I, E(ϵt | ft) = 0, E[ϵtϵ′t | ft ] = Σ.

Gibb sampler, draw µ, β and Σ.

ft and rt are jointly normally distributed.

Draw f conditional on µ, β, Σ and the data: ft

rt

 ∼ N
[ 0

µ

 ,

 I β′

β ββ′ +Σ

]
.

E(ft | µ,β,Σ, rt) = β′(ββ′ +Σ)−1(rt − µ),

Cov(ft | µ,β,Σ, rt) = I− β′(ββ′ +Σ)−1β.



Review: IPCA

Kelly, Pruitt, and Su (2019)

ri,t = z′i,t−1Γα + z′i,t−1Γβft + ϵi,t

ri,t = µ(zi,t−1) + β(zi,t−1)ft + ϵi,t

where µ(zi,t−1) = z′i,t−1Γα = µ1zi,t−1

β(zi,t−1) = z′i,t−1Γβ = β1(IK ⊗ zi,t−1)

Estimate of µ1, β1 and ft by optimization:

min
Γβ ,Γα,F

T∑
t=1

(
rt − Zt−1Γβ ft − Zt−1Γα

)′ (
rt − Zt−1Γβ ft − Zt−1Γα

)
.

Method: Alternating Least Square (ALS)

Some conclusions:

Dynamic betas (parameterized functions of observable characteristics)

Accept µ1 = 0.
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Bi-sorted portfolio construction

(1) Split the stocks into two groups based on lag me, (the smallest 70% in one

group and the largest 30% in the other). Then, further divide each group

into three categories based on the ranked standardized characteristics,

specifically within the intervals of -1 to -0.4, -0.4 to 0.4, and 0.4 to 1.

(2) Apply value weighting within each decile to obtain weight char. and

returns. ⇒ 2 × 3 × 10 = 360

(3) Standardize the characteristics in the cross-section into Uniform[−1, 1].



References i

References

Barillas, F. and J. Shanken (2018). Comparing asset pricing models. Journal of Finance 73(2),

715–754.

Chib, S. (1995). Marginal likelihood from the gibbs output. Journal of the American Statistical

Association 90(432), 1313–1321.

Chib, S., X. Zeng, and L. Zhao (2020). On comparing asset pricing models. Journal of

Finance 75(1), 551–577.

George, E. I. and R. E. McCulloch (1993). Variable selection via gibbs sampling. Journal of the

American Statistical Association 88(423), 881–889.

Geweke, J. and G. Zhou (1996). Measuring the pricing error of the arbitrage pricing theory.

Review of Financial Studies 9(2), 557–587.

Giannone, D., M. Lenza, and G. E. Primiceri (2021). Economic predictions with big data: The

illusion of sparsity. Econometrica 89(5), 2409–2437.



References ii

Gibbons, M. R., S. A. Ross, and J. Shanken (1989). A test of the efficiency of a given portfolio.

Econometrica, 1121–1152.

Kelly, B. T., S. Pruitt, and Y. Su (2019). Characteristics are covariances: A unified model of risk

and return. Journal of Financial Economics 134(3), 501–524.

Kozak, S. and S. Nagel (2023). When do cross-sectional asset pricing factors span the stochastic

discount factor? Technical report, National Bureau of Economic Research.

Kozak, S., S. Nagel, and S. Santosh (2020). Shrinking the cross-section. Journal of Financial

Economics 135(2), 271–292.

Mitchell, T. J. and J. J. Beauchamp (1988). Bayesian variable selection in linear regression.

Journal of the American Statistical Association 83(404), 1023–1032.

Shen, Z. and D. Xiu (2024). Can machines learn weak signals? University of Chicago, Becker

Friedman Institute for Economics Working Paper (2024-29).


	Appendix
	References


