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Sparsity

A central challenge in modern statistics: addressing high-dimensional problems

Sparse modeling and variable selections

selection for sparse models: L1 penalty

Researchers assume that the underlying signal is sparse.

Empirical asset pricing:

Feng, Giglio, and Xiu (JF 2020) and Freybergr, Neuhierl, and Weber (RFS

2020)

Assumption: the cross section is driven by a few factors/chars.
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Sparsity

A central challenge in modern statistics: addressing high-dimensional problems

Dense modeling and regularization

Shrinkage: L2 penalty

Empirical asset pricing:

Kozak, Nagel, and Santosh (JFE 2020) and Kozak and Nagel (WP 2023):

Char-sorted factors / IPCA type factors / Slope factors do not span the SDF

unless a large number of chars are used simultaneously.

Shen and Xiu (WP 2025): When signals are weak, Ridge outperforms Lasso

for prediction. Equivalently, the predictive model might not be sparse.
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Illusion of Sparsity

Giannone, Lenza, and Primiceri (ECTA 2021) (GLP2021) propose a Bayesian

sparse model that parametrizes the level of sparsity

Link L1 and L2: no assumption, but posterior.

They examine various types of datasets (Macro / Finance / Micro)

Findings: the posterior distribution does not typically concentrate on a

single sparse model.

⇒ This phenomenon highlights an illusion of sparsity in economic data.
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Illusion of Sparsity

Statisticians have developed lots of tools:

- Shrinkage: L2 penalty.

- Variable selection: L1 penalty.

AP modeling choices — Sparse v.s. Dense

These modeling outcomes are often artifacts of the imposed prior.

A less frequently explored question arises:

Are asset pricing models sparse?
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Motivation: Schrödinger’s Sparsity

Existing approaches: require researchers to commit ex ante to either a sparse

(selection) or dense (shrinkage) specification before the empirical investigation

and adhere to that assumption throughout the modeling process.

Schrödinger’s cat

We cannot determine whether the cat

is alive or dead until we open the box.

We cannot determine whether the

model is sparse or dense until we

examine the data.
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Research Questions

We examine the sparsity of chars in AP models.

We study the sparsity level following GLP2021.

Our framework is built on the conditional latent factor model of IPCA

(Kelly, Pruitt, and Su, JFE 2019) and the Bayesian latent factor model

(Geweke and Zhou, RFS 1996).

Our focuses are the char-driven alpha (mispricings) and beta (factor

loadings).
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Literature Positions

Extend the class of conditional factor models in which alphas and betas depend

on firm characteristics (e.g., Jagannathan and Wang, 1996 JF; Lettau and

Ludvigson, 2001 JPE; Avramov, 2004 RFS; Kelly, Pruitt, and Su, JFE 2019;

Bybee, Kelly, and Su, RFS 2023; Fan, Ke, Liao, Neuhierl, 2024 WP)

Respond to the ongoing debate over sparsity versus complexity in asset pricing

(e.g., Kozak, Nagel, Santosh, 2020 JFE; Kozak and Nagel, WP 2023; He,

Zhao, Zhou, 2024 WP; Kelly, Malamud, Zhou, 2024 JF; Shen and Xiu, 2025

WP)
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Literature Positions

Advance the literature on Bayesian model selection, averaging, and shrinkage in

finance (e.g., Avramov, 2002 JFE; Barillas and Shanken, 2018 JF; Chib, Zeng,

and Zhao, 2020 JF; Chib, Zhao, and Zhou, 2024 MS; Avramov, Cheng,

Metzker, Voigt, 2023 JF; Bryzgalova, Huang, Julliard, 2023 JF)

Complement new methodologies that extract latent factors from

high-dimensional signals (e.g., Lettau and Pelger, 2020 RFS; Kim, Korajczyk,

and Neuhierl 2021 RFS; Gu, Kelly, and Xiu, 2021 JoE; Chen, Pelger, Zhu, 2024

MS; Feng, He, Polson, Xu, 2024 JFQA; Cong, Feng, He, HE, 2025 JFE)

Our findings complement the literature on time-varying and regime-dependent

models of expected returns and factor loadings (e.g., Ferson and Harvey, 1999

JF; Lewellen and Nagel, 2006 JFE; Smith and Timmermann, 2021 RFS)

7 / 25



Contribution

Methodology Innovations

We propose a novel Bayesian sparse conditional (latent) factor model.

We allow sparsity levels to be freely estimated (or fixed exogenously).

We can consider the (global or separate) sparsity of alphas and betas.

Extension: our approach provides a new alternative to estimate conditional

models of observable factors (plus latent factors).

- For example, conditional CAPM

- recover unspanned risk factors

Empirical Findings

· · ·
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Key Results

Best-performing models are neither extremely sparse nor dense.

Alpha is typically sparser than beta.

Complementary relationship: when betas are dense, alpha becomes more

concentrated, and vice versa.

Sparsity varies across test asset sets.

5×5 ME-BM portfolios ⇒ Sparse model

Sparsity is time-varying. Models become more sparse during recessions.
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Model



Full Model

ri,t = α(Zi,t−1) + β(Zi,t−1)ft + ϵi,t (1)

where α(Zi,t−1) = α0 +α1Zi,t−1

β(Zi,t−1) = β0 + β1(IK ⊗ Zi,t−1)

ϵi,t ∼ N
(
0, σ2

i

)
ri,t : return of asset i at time t

ft : K latent factors

Zi,t−1: vector, L chars for asset i at time t − 1
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Spike-and-Slab Prior

Spike-and-slab prior, a Bayesian variable selection prior.

P(β ̸= 0) = q, P(β = 0) = 1− P(β ̸= 0) = 1− q.

β =

N
(
0, γ2

)
with prob q The regressor is chosen. ∼ L2 penalty

0 with prob 1− q The regressor is not chosen. ∼ L1 penalty

Standard spike-and-slab prior: q is a specific value.

GLP2021: q has its prior so that one can sample q.

- These priors probabilistically interpolate between variable selection and

shrinkage, allowing the degree of sparsity to be estimated from the data.

q0 1
sparser denser
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Standard spike-and-slab prior: q is a specific value.

GLP2021: q has its prior so that one can sample q.

- These priors probabilistically interpolate between variable selection and

shrinkage, allowing the degree of sparsity to be estimated from the data.

Prior settings of q ̸= precise control of sparsity levels!
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Sparse BayesIPCA Model

ri,t = α0 +α1Zi,t−1 + β0ft + β1[ft ⊗ Zi,t−1] + ϵi,t .

Independent spike-and-slab priors on α1 and β1

Global prior: same sparsity level of alpha and beta

[α1,β1]
iid∼

N
(
0, γ2

)
with prob q

0 with prob 1− q

q ∼ Beta(aq , bq),

γ2 ∼ IG(A/2,B/2)

α0,β0
iid∼ N

(
0, ξ2

)
, ξ2 ∼ IG(C/2,D/2)
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Sparse BayesIPCA Model

ri,t = α0 +α1Zi,t−1 + β0ft + β1[ft ⊗ Zi,t−1] + ϵi,t .

Independent spike-and-slab priors on α1 and β1

Separate priors: different sparsity levels of alpha and beta.

α1
iid∼

N
(
0, γ2

α

)
with prob qα

0 with prob 1− qα

, β1
iid∼

N
(
0, γ2

β

)
with prob qβ

0 with prob 1− qβ

qα ∼ Beta(aqα , bqα ), qβ ∼ Beta(aqβ , bqβ ),

γ2
α ∼ IG(Aα/2,Bα/2), γ2

β ∼ IG(Aβ/2,Bβ/2),
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Sparse BayesIPCA Model: An Extension

ri,t = α0 +α1Zi,t−1 + β0ft + β1[ft ⊗ Zi,t−1] + ϵi,t .

Directly control the sparsity level (i.e., control # selected chars).

M restricts the number of chars driving alpha and beta.

(Global) joint prior:

(τ1, τ2, · · · , τL) ∼
L∏

i=1

Bernoulli(L)× I

(
L∑

i=1

τi = M

)

(Separate) joint priors:

(τα1 , τα2 , · · · , ταL ) ∼
L∏

i=1

Bernoulli(L)× I

(
L∑

i=1

ταi = Mα

)

(τ
βk
1 , τ

βk
2 , · · · , τβk

L ) ∼
L∏

i=1

Bernoulli(L)× I

(
L∑

i=1

τβi = Mβ

)
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Empirical Results



Dataset

Main test assets:

P-Tree (Cong, Feng, He, and He, JFE 2025) test assets (1990-2024)

- Constructed based on the past sample (1980-1989)

Other test assets:

25 ME/BM portfolios (FF25), 61 long-short portfolios for each

characteristic (LS61), 357 bivariate-sorted portfolios (Bi357).

500 stocks with the highest and 500 stocks with the lowest average

market equity (Big ind500 / Small ind500).
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(i) Global and Separate Sparsity

Table 1: Model Performance under Global Sparse Priors

CSR2 Sharpe

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Unrestricted # selected chars.

q prior mean

0.1 29.37 43.66 55.57 0.35 1.36 0.92

0.5 29.54 43.63 54.79 0.35 1.44 0.92

0.9 29.71 43.62 53.89 0.35 1.50 0.95

Panel B: Fixed # selected chars.

M

2 25.44 52.49 51.02 0.44 1.11 0.48

10 29.53 38.32 41.51 0.35 0.87 1.12

18 27.48 39.31 42.02 0.33 0.55 0.95

Panel C: No sparsity

M 20 29.92 36.88 45.23 0.35 0.57 0.95

Benchmark: CAPM.

CSR2: model’s ability to explain the cross-sectional expected return.

q prior mean is 0.1. K = 5 ∼ Mα = 1,Mβ = 9.
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(i) Global and Separate Sparsity

Table 2: Model Performance under Separate Sparse Priors on Alphas and Betas

CSR2 TP. Sp

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Unrestricted # selected chars.

(qα prior mean,

qβ prior mean)

0.1,0.1 29.17 44.09 59.20 0.34 0.75 0.71

0.5,0.1 29.37 43.27 58.47 0.35 0.77 0.79

0.9,0.1 29.41 43.54 58.00 0.35 1.14 0.68

0.1,0.5 29.29 43.53 57.82 0.34 0.75 1.00

0.5,0.5 29.48 42.49 56.84 0.35 1.01 1.14

0.9,0.5 29.53 43.65 54.94 0.35 1.17 0.92

0.1,0.9 29.48 45.11 58.72 0.34 0.99 0.77

0.5,0.9 29.64 42.48 56.84 0.35 1.00 1.14

0.9,0.9 29.73 44.13 56.69 0.35 1.27 0.90

Panel B: Fixed # selected chars.

(Mα,Mβ)

2,2 25.44 49.34 48.39 0.44 1.10 0.95

10,2 27.98 51.07 50.10 0.37 0.57 0.87

18,2 25.17 47.01 38.00 0.32 0.79 0.68

2,10 28.85 51.17 56.83 0.42 0.60 0.87

10,10 29.59 37.87 41.20 0.35 0.89 0.97

18,10 27.19 40.97 39.03 0.32 0.47 0.88

2,18 29.81 54.91 56.99 0.43 0.65 1.13

10,18 29.88 34.24 51.26 0.36 1.01 1.22

18,18 27.46 39.30 42.11 0.33 0.53 0.94
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(i) Global and Separate Sparsity

Unrestricted # selected chars:

- Global prior:

q prior mean is 0.1. K = 5 ∼ Mα = 1,Mβ = 9.

- Separate priors:

Both prior means of qα and qβ are 0.1. K = 5 ∼ Mα = 1,Mβ = 10.

Fix # selected chars:

- Global prior: K = 5 ∼ Mα = 2,Mβ = 2

- Separate priors: K = 5 ∼ Mα = 2,Mβ = 18.

Best-performing models are neither extremely sparse nor dense.

# chars driving betas exceeds that of those driving alpha.

When sparsity is imposed exogenously, model performance peaks when the

imposed level aligns with the endogenous level chosen by the posterior.
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(ii) Large Sets of Test Assets

Table 3: Sparsity for Different Test Assets

Global prior Separate priors

q Mα Mβ qα qβ Mα Mβ

Panel A: P-Tree

100 0.48 5 11 0.31 0.59 4 12

200 0.60 7 14 0.40 0.67 5 14

400 0.70 9 15 0.47 0.85 9 18

Panel B: Ind. Stock

Small 500 0.62 11 13 0.51 0.65 9 13

Big 500 0.68 8 16 0.41 0.82 6 18

Panel C: Others

FF25 0.41 1 10 0.20 0.50 1 10

LS61 0.67 4 17 0.24 0.83 2 17

Bi357 0.81 11 19 0.50 0.90 10 19

Sparsity levels vary across different types of test assets.

E.g., FF25 sparser.
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FF25 0.41 1 10 0.20 0.50 1 10

LS61 0.67 4 17 0.24 0.83 2 17

Bi357 0.81 11 19 0.50 0.90 10 19

Panel A: Within the same category of test assets, a larger number of

assets generally requires more chars.
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Panel C: Others

FF25 0.41 1 10 0.20 0.50 1 10

LS61 0.67 4 17 0.24 0.83 2 17

Bi357 0.81 11 19 0.50 0.90 10 19

Panel B: Those test assets that are harder to explain tend to require more

chars to capture alpha.
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(ii) Large Sets of Test Assets

Table 3: Sparsity for Different Test Assets

Global prior Separate priors

q Mα Mβ qα qβ Mα Mβ

Panel A: P-Tree

100 0.48 5 11 0.31 0.59 4 12

200 0.60 7 14 0.40 0.67 5 14

400 0.70 9 15 0.47 0.85 9 18
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Panel C: Others

FF25 0.41 1 10 0.20 0.50 1 10

LS61 0.67 4 17 0.24 0.83 2 17

Bi357 0.81 11 19 0.50 0.90 10 19

Panel B: Complementary relationship: when betas are dense, alpha

becomes more concentrated, and vice versa.
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(ii) Large Sets of Test Assets

Table 3: Sparsity for Different Test Assets

Global prior Separate priors

q Mα Mβ qα qβ Mα Mβ

Panel A: P-Tree
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Panel C: Others

FF25 0.41 1 10 0.20 0.50 1 10

LS61 0.67 4 17 0.24 0.83 2 17

Bi357 0.81 11 19 0.50 0.90 10 19

Panel C: There is substantial variation in the sparsity levels across

commonly used test assets.
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(iii) Time-varying Sparsity

Table 4: Time Variation Analysis: Sparsity in Regimes

Different periods

Regime1 Regime2 Regime3 Normal Recession Full

Panel A: Global prior

q 0.37 0.41 0.42 0.47 0.42 0.48

Panel B: Separate priors

qα 0.30 0.29 0.23 0.27 0.24 0.31

qβ 0.42 0.46 0.56 0.54 0.53 0.59

Settings of time periods:

- Follow breakpoints in Smith and Timmermann (RFS 2021) to split time

periods. (July 1998 and June 2010)

- Define recession periods based on the Sahm Rule, totaling 88 months.

AP models tend to be sparser during recessions.
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Schrödinger’s Sparsity

Sparsity levels vary across both cross-sectional and time-series dimensions.

⇒ i) Type and number of test assets; ii) Time periods / Macro conditions

Assuming AP model to be either sparse or dense ex ante may be wrong.
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Conditional CAPM



Model with Observable and Latent Factors

In the conditional observable factor model, alpha and beta can be (sparse)

functions of high-dimensional chars.

Augmenting latent factors helps recover unspanned risk factors in

observable factor models.

ri,t = α(Zi,t−1) + β(Zi,t−1)
[
f̃t , ft

]
︸ ︷︷ ︸

Ft

+ϵi,t

= α0 +α1Zi,t−1︸ ︷︷ ︸
mispricing

+β0 f̃t + β1 [̃ft ⊗ Zi,t−1]︸ ︷︷ ︸
obs. factors, conditional beta

+ β0ft + β1[ft ⊗ zi,t−1]︸ ︷︷ ︸
latent factors, dynamic loadings

+ϵi,t .
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(iv) Resurrecting Conditional CAPM

Table 5: Augmented Observable Factor Models

CSR2 Sharpe (qα, qβ ) β0,MKT α RMSE

Panel A: only obs

MKT 14.93 0.57 0.45,0.63 1.15 0.0032

FF5 50.38 1.13 0.26,0.61 1.07 0.0014

Panel B: only latent

LF1 29.48 0.35 0.49,0.53 / 0.0036

LF5 56.81 1.13 0.23,0.34 / 0.0011

Panel C: obs + latent

MKT+LF1 53.87 0.87 0.31,0.65 1.14 0.0015

MKT+LF5 56.45 1.39 0.24,0.46 0.98 0.0007

FF5+LF1 50.55 1.23 0.33,0.65 1.06 0.0012

FF5+LF5 60.33 1.53 0.18,0.42 0.95 0.0001

Panel D: uncond. model

MKT / 0.57 / 1.19 0.0060

FF5 49.25 1.13 / 1.09 0.0042

Panel A v.s. Panel C: Adding latent factors helps mitigate model

misspecification.

- β0,MKT: be closed to 1 after introducing latent factors.

- α RMSE: decreases after introducing latent factors.
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Panel D: uncond. model

MKT / 0.57 / 1.19 0.0060

FF5 49.25 1.13 / 1.09 0.0042

Panel A v.s. Panel D: The conditional factor model outperforms in

cross-sectional explanatory power.
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(iv) Resurrecting Conditional CAPM

Figure 1: Chars Importance in Alphas and Betas across Different Models
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Summary

An important research problem: Are the asset pricing models sparse?

Schrödinger’s Sparsity

A new approach, the BayesIPCA Model, combines the Bayesian framework of

factor estimation and the chars-based model (IPCA).

An important extension for considering the spike-and-slab prior while

estimating the conditional (latent) factor model.

By avoiding pre-specified assumptions on sparsity or density, our approach

endogenously determines whether the model is sparse or dense.
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Schrödinger’s Sparsity

A new approach, the BayesIPCA Model, combines the Bayesian framework of

factor estimation and the chars-based model (IPCA).

An important extension for considering the spike-and-slab prior while

estimating the conditional (latent) factor model.

By avoiding pre-specified assumptions on sparsity or density, our approach

endogenously determines whether the model is sparse or dense.

Based on our method, we can:

Identify the global / separate sparsity levels of the asset-pricing model

Investigate the chars that drive alpha and betas

Resurrect the conditional CAPM
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