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High-dimensional Asset Pricing

High-dimensional AP has two different modeling choices and assumptions.

Sparse modeling: L1 penalty, Lasso regression

- Feng, Giglio, and Xiu (JF 2020), Freybergr, Neuhierl, and Weber (RFS 2020),

and Bybee, Kelly, and Su (RFS 2023)

Dense modeling: L2 penalty, Ridge regression

- Kozak, Nagel, and Santosh (JFE 2020) and Kozak and Nagel (WP 2023) —

SDF requires a large number of characteristics.

Empirical findings frequently mirror prior assumptions instead of revealing the

true nature of data.
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Illusion of Sparsity

Giannone, Lenza, and Primiceri (ECTA 2021) (GLP2021) develop a Bayesian

sparse model that learns sparsity levels in linear regression.

Test six high-dimensional datasets (Macro/Finance/Micro); Find the

posterior distribution rarely concentrates on a single sparse model.

⇒ illusion of sparsity

Can sparsity be treated not as an assumption, but as an inferred property of

the data?

GLP2021 links L1 and L2: no prespecified assumption, but posterior

learning for the unknown proportion of non-zero coefficients.
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Challenge and Motivation: Schrödinger’s Sparsity

Schrödinger’s cat

A cat, entangled with a

quantum system, remains in a

superposition of alive and dead

states until observed.

The nature of AP models —

sparse or dense — are in a

state of superposition until

empirical data is observed.
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High-dimensional Asset Pricing Models

We examine the sparsity of Asset Pricing models within the conditional latent

factor framework of IPCA with potentially mispricing.

ri,t = α(Zi,t−1) + β(Zi,t−1)
⊤ft + ϵi,t

where α(Zi,t−1) = α0 +α1Zi,t−1

β(Zi,t−1) = β0 + [β1(IK ⊗ Zi,t−1)]
⊤

ϵi,t ∼ N
(
0, σ2

i

)

ft : K latent factors (can include observable factors).

Zi,t−1: L characteristics.
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Research Questions

Built on IPCA (Kelly, Pruitt, and Su, JFE 2019; Chen, Roussanov, and Wang,

WP 2023) and Bayesian unconditional latent factor model (Geweke and

Zhou, RFS 1996).

— A New Perspective: Probability of char sparsity

Our focus is on the char-driven

betas and potentially mispricing.

— why Bayes?

Allow sparsity prob. to be data-inferred or exogenously fixed, enabling

model estimation without / with sparsity assumptions.
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Model



Model Setting

ri,t = α0 +α⊤
1 Zi,t−1︸ ︷︷ ︸

α(Zi,t−1)

+β⊤
0 ft + β⊤

1 [ft ⊗ Zi,t−1] + ϵi,t .

α(Zi,t−1) = 0 ⇒ Risk-based pricing model / factor model

- Mapping Zi,t−1 7→ β(Zi,t−1) encodes systematic risk exposure

- Hypo: Factor structure is both sufficient and complete for spanning the

cross section of E[ri,t ]

α(Zi,t−1) ̸= 0 ⇒ Data-generating process for expected returns

- Additional characteristic-driven components in expected returns are needed

beyond any risk-based factor representation

- Hypo: Factor structure is one component of a forecasting model
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Spike-and-Slab Prior: Bayesian Variable Selection

Let d = 1 or 0 denote selected or not selected, the spike and slab prior on β is

β | d ∼ dN
(
0, ξ21σ

2
)
+ (1− d)N

(
0, ξ20σ

2
)

P(d = 0) = 1− P(d = 1) = q

Hence, when ξ1 is related large and ξ0 shrinks to zero:

β =

0 with prob. q The regressor is not chosen.

N
(
0, γ2

)
with prob. 1− q The regressor is chosen.
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Spike-and-Slab Prior: Endogenous q

Standard spike-and-slab prior: q is a specific value.

GLP2021: q has its prior so that one can sample: q ∼ Beta(a, b)

- These priors probabilistically balance variable selection and shrinkage.

q0 1

lower prob. of sparsity higher prob. of sparsity

Prior settings of q ̸= precise control of sparsity levels!
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Prior: Learning Sparsity Probability

ri,t = α0 +α⊤
1 Zi,t−1 + β⊤

0 ft + β⊤
1 [ft ⊗ Zi,t−1] + ϵi,t .

Independent spike-and-slab priors on α1 and β1

Separate priors: different sparsity levels of alpha and beta.

[α1]l ∼

N (0, γ2
α) if dα

l = 1

0 if dα
l = 0

dα
l ∼ Bernoulli(1− qα)

qα ∼ Beta(aqα , bqα)

γ2
α ∼ IG (Aγα/2,Bγα/2)

[β1]l ∼

N (0, γ2
β) if dβ

l = 1

0 if dβ
l = 0

dβ
l ∼ Bernoulli(1− qβ)

qβ ∼ Beta(aqβ , bqβ )

γ2
β ∼ IG

(
Aγβ/2,Bγβ/2

)
Higher posterior mean of qα (or qβ), higher prob. of sparsity.
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Prior: Exogenous Fixed Sparsity Level

ri,t = α0 +α1Zi,t−1 + β0ft + β1[ft ⊗ Zi,t−1] + ϵi,t .

Directly control the sparsity level (i.e., control # selected char.).

Mα and Mβ restrict the number of char. driving alpha and beta.

(Separate) joint priors:

(dα
1 , dα

2 , · · · , dα
L ) ∼

[
L∏

l=1

Bernoulli(1− qα)

]
× I

(
L∑

l=1

dl = Mα

)
,

(dβ
1 , d

β
2 , · · · , d

β
L ) ∼

[
L∏

l=1

Bernoulli(1− qβ)

]
× I

(
L∑

l=1

dl = Mβ

)
.

Larger Mα (or Mβ), lower sparsity level.
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Schrödinger’s Sparsity



Data

20 characteristics:

Categories for frictions, momentum, investment, intangibles, value-versus-growth,

and profitability.

Main test assets:

P-Tree (Cong, Feng, He, and He, JFE 2025) test assets (1990-2024)

- Sequential decreasing alphas by boosted trees

- Constructed based on the past sample (1980-1989)

Other test assets:

25 ME/BM portfolios (ME/BM25), 360 bivariate-sorted portfolios (Bi360), and

610 univariate-sorted portfolios (Uni610).

500 stocks with the 1st-500th and 501st-1000th average market equity (Big

ind500 / Small ind500).
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(i) Learning Sparsity

Table 1: Performance for Various Models

CSR2 SR INS qβ and M̂β

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Learning Sparsity

qβ prior mean

0.9 14.7 63.1 68.3 0.49 0.38 0.92
0.59

(11)

0.57

(12)

0.60

(11)

0.5 14.6 61.9 68.0 0.49 0.51 0.90
0.43

(11)

0.44

(12)

0.47

(11)

0.1 14.5 62.8 68.9 0.49 0.54 0.98
0.24

(13)

0.30

(12)

0.32

(11)

Panel B: Fixed Sparsity Level

Mβ

2 13.6 63.1 62.7 0.50 0.23 0.63 / / /

10 13.8 62.6 64.9 0.49 0.60 0.66 / / /

18 14.9 64.0 66.2 0.49 0.54 0.55 / / /

Panel C: No Sparsity

Mβ 20 14.4 62.8 65.4 0.49 0.45 0.45 / / /

Panel D: IPCA

Mβ 20 17.8 61.7 70.8 0.33 0.50 0.74 / / /

Models are not very sparse, nor dense

Learn rather than impose sparsity in conditional asset pricing models
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(ii) Test Assets and Sparsity

Table 2: Sparsity for Different Test Assets

CSR2 SR qβ M̂β

Panel A: P-Tree

100 59.6 1.12 0.50 10

200 69.4 0.68 0.37 14

400 63.3 1.01 0.26 17

Panel B: Ind. Stock

Big500 46.9 1.54 0.30 16

Small500 30.1 4.16 0.42 12

Panel C: Others

ME/BM25 53.6 0.82 0.50 10

Bi360 71.6 1.15 0.21 19

Uni610 66.1 0.87 0.23 18

Sparsity levels change across different types of test assets.

Panels A, C: Assets that are more difficult to price require more chars.

Panel B: Effect of potential mispricing.
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Pricing Difficulty versus Sparsity

Figure 1: Sparsity and Pricing Difficulty for Different Test Assets
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Sparsity is linked to pricing difficulties of test assets.
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(iii) Macro Regimes and Sparsity

Table 3: Sparsity in Structural Breaks / Business Cycles

CSR2 SR qβ M̂β

Panel A: Sequential segmentation

Regime1 52.9 1.40 0.53 9

Regime2 36.6 0.74 0.53 9

Regime3 68.9 0.53 0.50 10

Panel B: Macro-driven segmentation

Normal 61.7 0.83 0.49 10

Recession 21.9 1.01 0.56 8

Panel C: Full period

Whole 52.1 0.73 0.46 11

Settings of time periods:

- Breakpoints in Smith and Timmermann (RFS 2021): July 1998 and June 2010.

- Define recession periods based on the Sahm Rule (88 months).

AP models tend to be sparser during recessions.

⇒ Macro conditions dominate.
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Schrödinger’s Sparsity Everywhere!

Sparsity Prob. change across both cross-sectional and time-series dimensions.

⇒ i) Test assets / Pricing difficulty; ii) Time periods / Macro conditions

Learning sparsity prob, instead of assuming AP model to be

either sparse or dense ex ante
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Learning Sparsity with Mispricing



(i) Mispricing Test
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(ii) Investment Performance

Table 4: Forecast-Implied Investment Performance (Sharpe Ratio) for Various Models

Sign-adj. Value-Weighted Sign-adj. Equal-Weighted Forecast-Weighted

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Learning Sparsity

(qα,qβ) prior mean 0.5,0.5 0.59 -0.14 0.83 0.42 -0.01 0.76 0.46 0.05 0.78

INS posterior of qα, qβ and M̂α, M̂β

K = 1: (0.57,0.44) and (7,11); K = 3: (0.68,0.43) and (5,12); K = 5: (0.80,0.44) and (0,12)

Panel B: Fixed Sparsity Level

(Mα,Mβ)

2,2 0.59 0.70 0.63 0.43 0.46 0.43 0.42 0.52 0.48

10,2 0.58 0.59 -0.61 0.42 0.42 -0.42 0.40 0.39 -0.39

18,2 0.57 0.33 -0.50 0.43 0.14 -0.37 0.40 0.12 -0.31

2,10 0.68 0.35 0.73 0.48 0.11 0.55 0.50 0.12 0.56

10,10 0.63 0.73 0.61 0.43 0.46 0.42 0.47 0.49 0.39

18,10 0.65 0.74 0.61 0.44 0.53 0.42 0.47 0.48 0.47

2,18 0.70 0.09 0.71 0.52 -0.04 0.57 0.53 0.03 0.59

10,18 0.68 0.47 0.61 0.49 0.21 0.42 0.51 0.18 0.38

18,18 0.68 0.41 0.16 0.49 0.18 -0.12 0.51 0.17 -0.14

Panel C: No Sparsity

(Mα,Mβ) 20 0.67 0.72 0.74 0.46 0.48 0.51 0.51 0.46 0.54

Panel D: IPCA

(Mα,Mβ) 20 0.66 0.66 0.74 0.52 0.48 0.56 0.55 0.53 0.57
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(iii) Risk and Mispricing

Table 5: Performance for Various Models with Mispricing

CSR2
adj Pure-alpha SR Alpha long-short SR

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Learning Sparsity

(qα, qβ) prior mean 0.5,0.5 13.3 63.9 69.3 0.50 0.73 0.86 0.81 0.76 1.04

Panel B: Fixed Sparsity Level

(Mα,Mβ)

2,2 13.3 64.0 63.7 0.04 0.46 0.46 0.55 0.60 0.48

10,2 13.6 63.6 63.7 0.55 0.86 0.86 0.92 0.94 0.88

18,2 13.9 63.8 63.7 0.53 0.75 0.64 1.00 0.80 0.75

2,10 13.2 61.6 66.6 0.04 0.41 0.54 0.54 0.14 0.93

10,10 12.8 62.5 63.9 0.54 0.76 0.64 0.85 0.77 1.00

18,10 13.4 59.5 65.9 0.54 0.37 0.40 0.97 0.69 0.79

2,18 13.4 62.0 65.8 0.01 0.45 0.10 0.53 0.41 0.44

10,18 13.9 61.0 67.3 0.54 0.58 0.56 0.85 0.83 0.92

18,18 12.9 61.2 65.0 0.54 0.56 0.56 0.97 0.87 0.90

Panel C: No Sparsity

(Mα,Mβ) 20 12.2 58.9 68.4 0.49 0.46 0.30 0.87 0.75 0.67

Panel D: IPCA

(Mα,Mβ) 20 16.4 59.2 69.3 0.67 0.56 0.43 0.81 0.74 0.77

Go to metrics

19 / 20



Summary

QUESTION: How can researchers determine model assumptions before

examining the data?

⇒ Schrödinger’s Sparsity: the true state remains unknowable until observed

- treating sparsity as a probabilistic property rather than a binary assumption

A new approach, a flexible Bayesian framework

- Utilizing the independent / joint spike-and-slab priors

- Endogenously determine whether the model is sparse or dense, without

imposing prior assumptions on sparsity or density

- Exogenously control the sparsity level of the model

Empirical findings:

- Best models lie between the extremes of full sparsity and full density

- Learning sparsity matters

- Cross section: Sparsity probability is linked to the pricing difficulty of test assets

- Time series: Sparsity depends on macro states and increases during recessions
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(iii) Risk and Mispricing (measurement)**

Adjusted cross-sectional R2

- Non-traded factor:

E(ft | α,β,Σ, rt) = β⊤(ββ⊤ +Σ
)−1

(rt −α)

- A traded (realized) factor proxy:

ftradedt = β⊤(ββ⊤ +Σ
)−1

rt

- The fitted return obtained from the risk-exposure channel (r̃i,t):

r̃i,t = β̂⊤
0 ftradedt + β̂⊤

1

(
ftradedt ⊗ Zi,t−1

)
Alpha strategies

- Pure-alpha strategy

wPA
t−1 = Z̃t−1

(
Z̃⊤
t−1Z̃t−1

)−1
Γ̂α, where Z̃t−1 = [1,Zt−1]

RPA
t = (wPA

t−1)
⊤
(
rt − β̂⊤

0 ftradedt − β̂⊤
1

(
ftradedt ⊗ Zt−1

))
.

- Alpha long-short strategy

wLS
t−1 = Z̃t−1Γ̂α −mean(Z̃t−1Γ̂α),

Back



Observable Factors and Sparsity

In the conditional model, beta are functions of char.

fL: Latent factor

ri,t = β(Zi,t−1)
⊤fLt + ϵi,t = β⊤

0 fLt + β⊤
1 [fLt ⊗ Zi,t−1]︸ ︷︷ ︸

latent factors, conditional beta

+ϵi,t

fO : Pre-specified factor

ri,t = β(Zi,t−1)
⊤fOt + ϵi,t = β⊤

0 fOt + β⊤
1 [fOt ⊗ Zi,t−1]︸ ︷︷ ︸

obs. factors, conditional beta

+ϵi,t

Replacing latent factors with pre-specified factors

Interpretation of “sparsity”

Persistence of sparsity patterns



(iv) Prespecified Factors and Sparsity

Obs: Market factor; Fama-French five factors (FF5)

Latent but prespecified: Five factors estimated via IPCA (IPCA5)

Figure 3: Sparsity across Factors and Test Assets
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