

Schrödinger's Sparsity in the Cross Section of Stock Returns

Doron Avramov¹, Guanhao Feng², Jingyu He² and Shuhua Xiao²

Dec 15, 2025

Global AI Finance Research Conference

¹Reichman University ²City University of Hong Kong

High-dimensional AP has two *different* modeling choices and assumptions.

- **Sparse modeling: L_1 penalty, Lasso regression**

- Feng, Giglio, and Xiu (JF 2020), Freybergr, Neuhierl, and Weber (RFS 2020), and Bybee, Kelly, and Su (RFS 2023)

- **Dense modeling: L_2 penalty, Ridge regression**

- Kozak, Nagel, and Santosh (JFE 2020) and Kozak and Nagel (WP 2023) — SDF requires a large number of characteristics.

Empirical findings frequently mirror prior assumptions instead of revealing the true nature of data.

Illusion of Sparsity

Giannone, Lenza, and Primiceri (ECTA 2021) (GLP2021) develop a Bayesian sparse model that learns **sparsity levels** in linear regression.

- Test six high-dimensional datasets (Macro/Finance/Micro); Find the posterior distribution **rarely** concentrates on a single sparse model.
⇒ *illusion of sparsity*

Can sparsity be treated not as an assumption, but as an inferred property of the data?

- GLP2021 links L_1 and L_2 : **no prespecified assumption**, but posterior learning for the unknown proportion of non-zero coefficients.

Challenge and Motivation: Schrödinger's Sparsity

- A cat, entangled with a quantum system, remains in a superposition of **alive and dead** states until observed.
- The nature of AP models — **sparse or dense** — are in a state of superposition until empirical data is observed.

Schrödinger's cat

High-dimensional Asset Pricing Models

We examine the sparsity of Asset Pricing models within the conditional latent factor framework of IPCA with potentially mispricing.

$$r_{i,t} = \alpha(\mathbf{Z}_{i,t-1}) + \beta(\mathbf{Z}_{i,t-1})^\top \mathbf{f}_t + \epsilon_{i,t}$$

where $\alpha(\mathbf{Z}_{i,t-1}) = \alpha_0 + \alpha_1 \mathbf{Z}_{i,t-1}$

$$\beta(\mathbf{Z}_{i,t-1}) = \beta_0 + [\beta_1(\mathbf{I}_K \otimes \mathbf{Z}_{i,t-1})]^\top$$

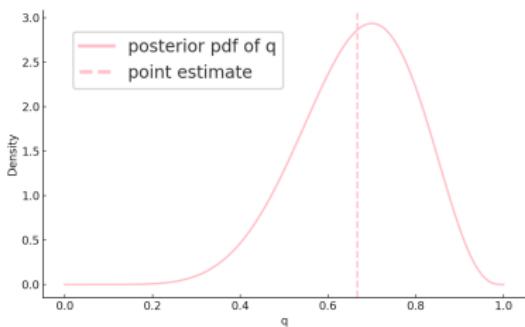
$$\epsilon_{i,t} \sim \mathcal{N}(0, \sigma_i^2)$$

- \mathbf{f}_t : K latent factors (can include observable factors).
- $\mathbf{Z}_{i,t-1}$: L characteristics.

Research Questions

- Built on IPCA (Kelly, Pruitt, and Su, JFE 2019; Chen, Roussanov, and Wang, WP 2023) and Bayesian unconditional latent factor model (Geweke and Zhou, RFS 1996).
 - A New Perspective: Probability of char sparsity

- Our focus is on the char-driven betas and potentially mispricing.
 - why Bayes?



- Allow sparsity prob. to be data-inferred or exogenously fixed, enabling model estimation without / with sparsity assumptions.

Model

Model Setting

$$r_{i,t} = \underbrace{\alpha_0 + \alpha_1^\top \mathbf{Z}_{i,t-1}}_{\alpha(\mathbf{Z}_{i,t-1})} + \beta_0^\top \mathbf{f}_t + \beta_1^\top [\mathbf{f}_t \otimes \mathbf{Z}_{i,t-1}] + \epsilon_{i,t}.$$

- $\alpha(\mathbf{Z}_{i,t-1}) = \mathbf{0} \Rightarrow$ Risk-based pricing model / factor model
 - Mapping $\mathbf{Z}_{i,t-1} \mapsto \beta(\mathbf{Z}_{i,t-1})$ encodes systematic risk exposure
 - **Hypo:** Factor structure is both sufficient and complete for spanning the cross section of $\mathbb{E}[r_{i,t}]$
- $\alpha(\mathbf{Z}_{i,t-1}) \neq \mathbf{0} \Rightarrow$ Data-generating process for expected returns
 - Additional characteristic-driven components in expected returns are needed beyond any risk-based factor representation
 - **Hypo:** Factor structure is one component of a forecasting model

Spike-and-Slab Prior: Bayesian Variable Selection

Let $d = 1$ or 0 denote selected or not selected, the spike and slab prior on β is

$$\beta | d \sim d\mathcal{N}\left(0, \xi_1^2 \sigma^2\right) + (1 - d)\mathcal{N}\left(0, \xi_0^2 \sigma^2\right)$$

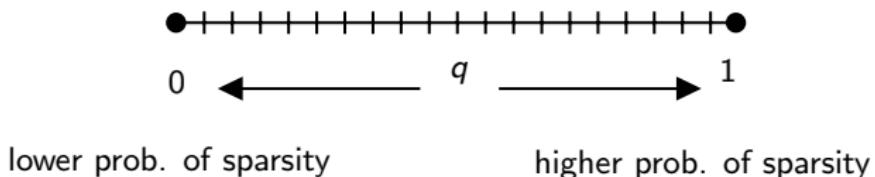
$$P(d = 0) = 1 - P(d = 1) = q$$

Hence, when ξ_1 is related large and ξ_0 shrinks to zero:

$$\beta = \begin{cases} 0 \text{ with prob. } q & \text{The regressor is not chosen.} \\ \mathcal{N}(0, \gamma^2) \text{ with prob. } 1 - q & \text{The regressor is chosen.} \end{cases}$$

Spike-and-Slab Prior: Endogenous q

- Standard spike-and-slab prior: q is a specific value.
- GLP2021: q has its prior so that one can sample: $q \sim \text{Beta}(a, b)$
 - These priors probabilistically balance variable selection and shrinkage.



- Prior settings of $q \neq$ precise control of sparsity levels!

Prior: Learning Sparsity Probability

$$r_{i,t} = \alpha_0 + \boldsymbol{\alpha}_1^\top \mathbf{Z}_{i,t-1} + \boldsymbol{\beta}_0^\top \mathbf{f}_t + \boldsymbol{\beta}_1^\top [\mathbf{f}_t \otimes \mathbf{Z}_{i,t-1}] + \epsilon_{i,t}.$$

- Independent spike-and-slab priors on $\boldsymbol{\alpha}_1$ and $\boldsymbol{\beta}_1$
- Separate priors: different sparsity levels of alpha and beta.

$$[\boldsymbol{\alpha}_1]_l \sim \begin{cases} \mathcal{N}(0, \gamma_\alpha^2) & \text{if } d_l^\alpha = 1 \\ 0 & \text{if } d_l^\alpha = 0 \end{cases} \quad [\boldsymbol{\beta}_1]_l \sim \begin{cases} \mathcal{N}(0, \gamma_\beta^2) & \text{if } d_l^\beta = 1 \\ 0 & \text{if } d_l^\beta = 0 \end{cases}$$

$$d_l^\alpha \sim \text{Bernoulli}(1 - q_\alpha) \quad d_l^\beta \sim \text{Bernoulli}(1 - q_\beta)$$

$$q_\alpha \sim \text{Beta}(a_{q_\alpha}, b_{q_\alpha}) \quad q_\beta \sim \text{Beta}(a_{q_\beta}, b_{q_\beta})$$

$$\gamma_\alpha^2 \sim \mathcal{IG}(A_{\gamma_\alpha}/2, B_{\gamma_\alpha}/2) \quad \gamma_\beta^2 \sim \mathcal{IG}(A_{\gamma_\beta}/2, B_{\gamma_\beta}/2)$$

- Higher posterior mean of q_α (or q_β), higher prob. of sparsity.

Prior: Exogenous Fixed Sparsity Level

$$r_{i,t} = \alpha_0 + \alpha_1 \mathbf{Z}_{i,t-1} + \beta_0 \mathbf{f}_t + \beta_1 [\mathbf{f}_t \otimes \mathbf{Z}_{i,t-1}] + \epsilon_{i,t}.$$

- Directly **control the sparsity level** (i.e., control # selected char.).
 M_α and M_β restrict the number of char. driving alpha and beta.

- **(Separate) joint priors:**

$$(d_1^\alpha, d_2^\alpha, \dots, d_L^\alpha) \sim \left[\prod_{l=1}^L \text{Bernoulli}(1 - q_\alpha) \right] \times \mathbf{I} \left(\sum_{l=1}^L d_l = M_\alpha \right),$$

$$(d_1^\beta, d_2^\beta, \dots, d_L^\beta) \sim \left[\prod_{l=1}^L \text{Bernoulli}(1 - q_\beta) \right] \times \mathbf{I} \left(\sum_{l=1}^L d_l = M_\beta \right).$$

- **Larger M_α (or M_β), lower sparsity level.**

Schrödinger's Sparsity

Data

20 characteristics:

- Categories for frictions, momentum, investment, intangibles, value-versus-growth, and profitability.

Main test assets:

- P-Tree (Cong, Feng, He, and He, JFE 2025) test assets (1990-2024)
 - Sequential decreasing alphas by boosted trees
 - Constructed based on the past sample (1980-1989)

Other test assets:

- 25 ME/BM portfolios (ME/BM25), 360 bivariate-sorted portfolios (Bi360), and 610 univariate-sorted portfolios (Uni610).
- 500 stocks with the 1st-500th and 501st-1000th average market equity (Big ind500 / Small ind500).

(i) Learning Sparsity

Table 1: Performance for Various Models

		CSR ²			SR			INS q_β and \hat{M}_β		
		$K = 1$	$K = 3$	$K = 5$	$K = 1$	$K = 3$	$K = 5$	$K = 1$	$K = 3$	$K = 5$
<i>Panel A: Learning Sparsity</i>										
	0.9	14.7	63.1	68.3	0.49	0.38	0.92	0.59 (11)	0.57 (12)	0.60 (11)
q_β prior mean	0.5	14.6	61.9	68.0	0.49	0.51	0.90	0.43 (11)	0.44 (12)	0.47 (11)
	0.1	14.5	62.8	68.9	0.49	0.54	0.98	0.24 (13)	0.30 (12)	0.32 (11)
<i>Panel B: Fixed Sparsity Level</i>										
	2	13.6	63.1	62.7	0.50	0.23	0.63	/	/	/
M_β	10	13.8	62.6	64.9	0.49	0.60	0.66	/	/	/
	18	14.9	64.0	66.2	0.49	0.54	0.55	/	/	/
<i>Panel C: No Sparsity</i>										
M_β	20	14.4	62.8	65.4	0.49	0.45	0.45	/	/	/
<i>Panel D: IPCA</i>										
M_β	20	17.8	61.7	70.8	0.33	0.50	0.74	/	/	/

- Models are not very sparse, nor dense
- Learn rather than impose sparsity in conditional asset pricing models

(ii) Test Assets and Sparsity

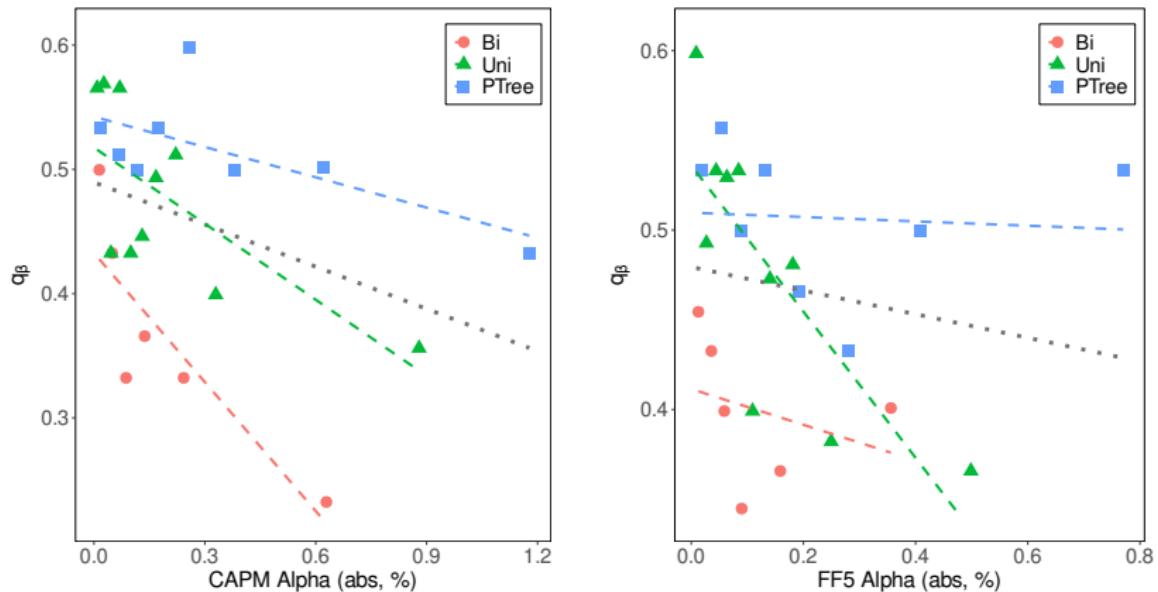
Table 2: Sparsity for Different Test Assets

	CSR ²	SR	q_β	\hat{M}_β
<i>Panel A: P-Tree</i>				
100	59.6	1.12	0.50	10
200	69.4	0.68	0.37	14
400	63.3	1.01	0.26	17
<i>Panel B: Ind. Stock</i>				
Big500	46.9	1.54	0.30	16
Small500	30.1	4.16	0.42	12
<i>Panel C: Others</i>				
ME/BM25	53.6	0.82	0.50	10
Bi360	71.6	1.15	0.21	19
Uni610	66.1	0.87	0.23	18

- Sparsity levels change across different types of test assets.
- Panels A, C: Assets that are more difficult to price require more chars.
- Panel B: Effect of potential mispricing.

Pricing Difficulty versus Sparsity

Figure 1: Sparsity and Pricing Difficulty for Different Test Assets



Sparsity is linked to **pricing difficulties** of test assets.

(iii) Macro Regimes and Sparsity

Table 3: Sparsity in Structural Breaks / Business Cycles

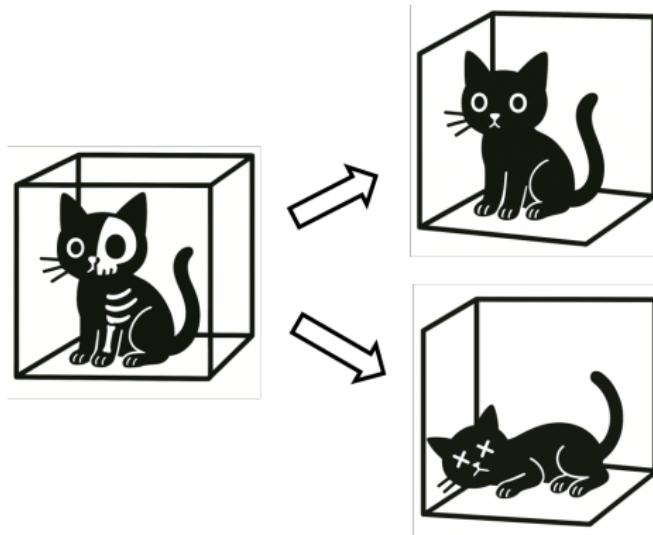
	CSR ²	SR	q_β	\hat{M}_β
<i>Panel A: Sequential segmentation</i>				
Regime1	52.9	1.40	0.53	9
Regime2	36.6	0.74	0.53	9
Regime3	68.9	0.53	0.50	10
<i>Panel B: Macro-driven segmentation</i>				
Normal	61.7	0.83	0.49	10
Recession	21.9	1.01	0.56	8
<i>Panel C: Full period</i>				
Whole	52.1	0.73	0.46	11

- Settings of time periods:
 - Breakpoints in [Smith and Timmermann \(RFS 2021\)](#): July 1998 and June 2010.
 - Define recession periods based on the Sahm Rule (88 months).
- AP models tend to be **sparser during recessions**.
 - ⇒ Macro conditions dominate.

Schrödinger's Sparsity Everywhere!

Sparsity Prob. change across both **cross-sectional** and **time-series** dimensions.

⇒ i) Test assets / Pricing difficulty; ii) Time periods / Macro conditions



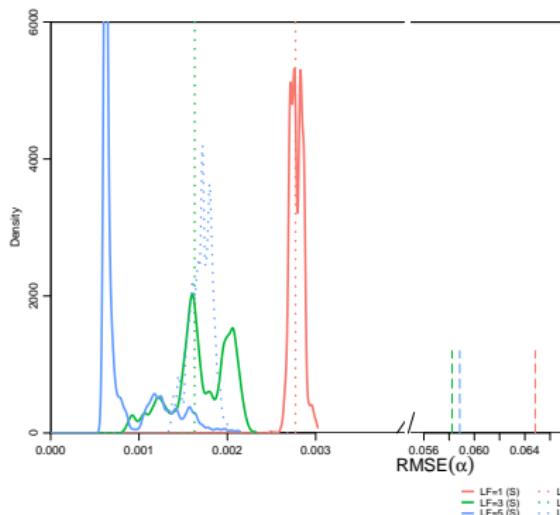
Learning sparsity prob, instead of assuming AP model to be
either sparse or dense ex ante

Learning Sparsity with Mispricing

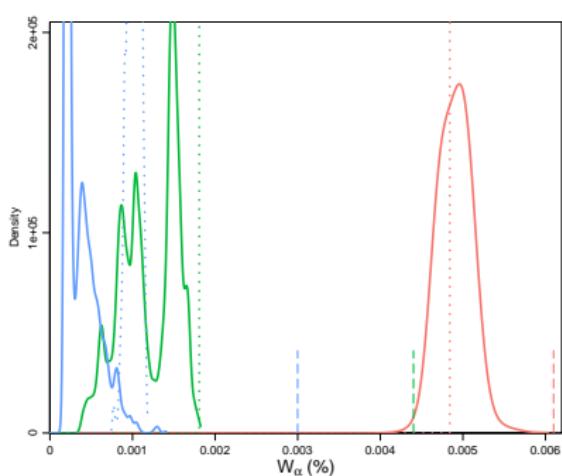
(i) Mispricing Test

$$\hat{\boldsymbol{\alpha}}_{it}^{(g)} = \hat{\boldsymbol{\alpha}}_0^{(g)} + \hat{\boldsymbol{\alpha}}_1^{(g)\top} \mathbf{Z}_{i,t-1}$$

- Scale of the coefficient vector: $W_\alpha^{(g)} = \hat{\boldsymbol{\Gamma}}_\alpha^{(g)\top} \hat{\boldsymbol{\Gamma}}_\alpha^{(g)}$, where $\boldsymbol{\Gamma}_\alpha = [\boldsymbol{\alpha}_0, \boldsymbol{\alpha}_1]$
- Scale of the implied mispricing: $\hat{\boldsymbol{\alpha}}^{(g)} = \sqrt{\frac{1}{N} \sum_{i=1}^N \left(\frac{1}{T} \sum_{t=1}^T \hat{\boldsymbol{\alpha}}_{it}^{(g)} \right)^2}$



(a) Value / density of $\text{RMSE}(\boldsymbol{\alpha})$



(b) Value / density of W_α (%)

(ii) Investment Performance

Table 4: Forecast-Implied Investment Performance (Sharpe Ratio) for Various Models

	Sign-adj. Value-Weighted			Sign-adj. Equal-Weighted			Forecast-Weighted			
	$K = 1$	$K = 3$	$K = 5$	$K = 1$	$K = 3$	$K = 5$	$K = 1$	$K = 3$	$K = 5$	
<i>Panel A: Learning Sparsity</i>										
(q_α, q_β) prior mean	0.5,0.5	0.59	-0.14	0.83	0.42	-0.01	0.76	0.46	0.05	0.78
INS posterior of q_α, q_β and $\hat{M}_\alpha, \hat{M}_\beta$										
$K = 1$: (0.57,0.44) and (7,11); $K = 3$: (0.68,0.43) and (5,12); $K = 5$: (0.80,0.44) and (0,12)										
<i>Panel B: Fixed Sparsity Level</i>										
(M_α, M_β)	2,2	0.59	0.70	0.63	0.43	0.46	0.43	0.42	0.52	0.48
	10,2	0.58	0.59	-0.61	0.42	0.42	-0.42	0.40	0.39	-0.39
	18,2	0.57	0.33	-0.50	0.43	0.14	-0.37	0.40	0.12	-0.31
	2,10	0.68	0.35	0.73	0.48	0.11	0.55	0.50	0.12	0.56
	10,10	0.63	0.73	0.61	0.43	0.46	0.42	0.47	0.49	0.39
	18,10	0.65	0.74	0.61	0.44	0.53	0.42	0.47	0.48	0.47
	2,18	0.70	0.09	0.71	0.52	-0.04	0.57	0.53	0.03	0.59
	10,18	0.68	0.47	0.61	0.49	0.21	0.42	0.51	0.18	0.38
	18,18	0.68	0.41	0.16	0.49	0.18	-0.12	0.51	0.17	-0.14
<i>Panel C: No Sparsity</i>										
(M_α, M_β)	20	0.67	0.72	0.74	0.46	0.48	0.51	0.51	0.46	0.54
<i>Panel D: IPCA</i>										
(M_α, M_β)	20	0.66	0.66	0.74	0.52	0.48	0.56	0.55	0.53	0.57

(iii) Risk and Mispricing

Table 5: Performance for Various Models with Mispricing

		CSR _{adj} ²			Pure-alpha SR			Alpha long-short SR			
		K = 1	K = 3	K = 5	K = 1	K = 3	K = 5	K = 1	K = 3	K = 5	
<i>Panel A: Learning Sparsity</i>											
(q_α, q_β) prior mean	0.5,0.5	13.3	63.9	69.3	0.50	0.73	0.86	0.81	0.76	1.04	
<i>Panel B: Fixed Sparsity Level</i>											
(M_α, M_β)	2,2	13.3	64.0	63.7	0.04	0.46	0.46	0.55	0.60	0.48	
	10,2	13.6	63.6	63.7	0.55	0.86	0.86	0.92	0.94	0.88	
	18,2	13.9	63.8	63.7	0.53	0.75	0.64	1.00	0.80	0.75	
	2,10	13.2	61.6	66.6	0.04	0.41	0.54	0.54	0.14	0.93	
	10,10	12.8	62.5	63.9	0.54	0.76	0.64	0.85	0.77	1.00	
	18,10	13.4	59.5	65.9	0.54	0.37	0.40	0.97	0.69	0.79	
	2,18	13.4	62.0	65.8	0.01	0.45	0.10	0.53	0.41	0.44	
	10,18	13.9	61.0	67.3	0.54	0.58	0.56	0.85	0.83	0.92	
	18,18	12.9	61.2	65.0	0.54	0.56	0.56	0.97	0.87	0.90	
<i>Panel C: No Sparsity</i>											
(M_α, M_β)		20	12.2	58.9	68.4	0.49	0.46	0.30	0.87	0.75	0.67
<i>Panel D: IPCA</i>											
(M_α, M_β)		20	16.4	59.2	69.3	0.67	0.56	0.43	0.81	0.74	0.77

▶ Go to metrics

Summary

- QUESTION: How can researchers determine model assumptions before examining the data?
 - ⇒ Schrödinger's Sparsity: the true state remains unknowable until observed
 - treating sparsity as a probabilistic property rather than a binary assumption
- A new approach, a flexible Bayesian framework
 - Utilizing the independent / joint spike-and-slab priors
 - Endogenously determine whether the model is sparse or dense, without imposing prior assumptions on sparsity or density
 - Exogenously control the sparsity level of the model
- Empirical findings:
 - Best models lie between the extremes of full sparsity and full density
 - Learning sparsity matters
 - Cross section: Sparsity probability is linked to the pricing difficulty of test assets
 - Time series: Sparsity depends on macro states and increases during recessions

(iii) Risk and Mispricing (measurement)**

- Adjusted cross-sectional R^2

- Non-traded factor:

$$\mathbb{E}(\mathbf{f}_t | \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\Sigma}, \mathbf{r}_t) = \boldsymbol{\beta}^\top (\boldsymbol{\beta}\boldsymbol{\beta}^\top + \boldsymbol{\Sigma})^{-1} (\mathbf{r}_t - \boldsymbol{\alpha})$$

- A traded (realized) factor proxy:

$$\mathbf{f}_t^{\text{traded}} = \boldsymbol{\beta}^\top (\boldsymbol{\beta}\boldsymbol{\beta}^\top + \boldsymbol{\Sigma})^{-1} \mathbf{r}_t$$

- The fitted return obtained from the risk-exposure channel ($\tilde{r}_{i,t}$):

$$\tilde{r}_{i,t} = \hat{\boldsymbol{\beta}}_0^\top \mathbf{f}_t^{\text{traded}} + \hat{\boldsymbol{\beta}}_1^\top (\mathbf{f}_t^{\text{traded}} \otimes \mathbf{Z}_{i,t-1})$$

- Alpha strategies

- Pure-alpha strategy

$$\mathbf{w}_{t-1}^{\text{PA}} = \tilde{\mathbf{Z}}_{t-1} (\tilde{\mathbf{Z}}_{t-1}^\top \tilde{\mathbf{Z}}_{t-1})^{-1} \hat{\boldsymbol{\Gamma}}_\alpha, \text{ where } \tilde{\mathbf{Z}}_{t-1} = [\mathbf{1}, \mathbf{Z}_{t-1}]$$

$$R_t^{\text{PA}} = (\mathbf{w}_{t-1}^{\text{PA}})^\top (\mathbf{r}_t - \hat{\boldsymbol{\beta}}_0^\top \mathbf{f}_t^{\text{traded}} - \hat{\boldsymbol{\beta}}_1^\top (\mathbf{f}_t^{\text{traded}} \otimes \mathbf{Z}_{t-1})).$$

- Alpha long-short strategy

$$\mathbf{w}_{t-1}^{\text{LS}} = \tilde{\mathbf{Z}}_{t-1} \hat{\boldsymbol{\Gamma}}_\alpha - \text{mean}(\tilde{\mathbf{Z}}_{t-1} \hat{\boldsymbol{\Gamma}}_\alpha),$$

Observable Factors and Sparsity

In the conditional model, beta are **functions of char.**

- \mathbf{f}^L : Latent factor

$$r_{i,t} = \beta(\mathbf{Z}_{i,t-1})^\top \mathbf{f}_t^L + \epsilon_{i,t} = \underbrace{\beta_0^\top \mathbf{f}_t^L + \beta_1^\top [\mathbf{f}_t^L \otimes \mathbf{Z}_{i,t-1}]}_{\text{latent factors, conditional beta}} + \epsilon_{i,t}$$

- \mathbf{f}^O : Pre-specified factor

$$r_{i,t} = \beta(\mathbf{Z}_{i,t-1})^\top \mathbf{f}_t^O + \epsilon_{i,t} = \underbrace{\beta_0^\top \mathbf{f}_t^O + \beta_1^\top [\mathbf{f}_t^O \otimes \mathbf{Z}_{i,t-1}]}_{\text{obs. factors, conditional beta}} + \epsilon_{i,t}$$

Replacing latent factors with **pre-specified factors**

- Interpretation of “sparsity”
- Persistence of sparsity patterns

(iv) Prespecified Factors and Sparsity

- Obs: Market factor; Fama-French five factors (FF5)
- Latent but prespecified: Five factors estimated via IPCA (IPCA5)

Figure 3: Sparsity across Factors and Test Assets

