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High-dimensional Asset Pricing

High-dimensional AP has two different modeling choices and assumptions.

Sparse modeling: L1 penalty, Lasso regression

- Feng, Giglio, and Xiu (JF 2020), Freybergr, Neuhierl, and Weber (RFS 2020),

and Bybee, Kelly, and Su (RFS 2023)

Dense modeling: L2 penalty, Ridge regression

- Kelly, Pruitt, and Su (JFE 2019), Kozak, Nagel, and Santosh (JFE 2020)

- Kozak and Nagel (WP 2023) — SDF requires a large number of characteristics.

- Shen and Xiu (WP 2025) — Ridge outperforms Lasso when signals are weak.
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Illusion of Sparsity

Giannone, Lenza, and Primiceri (ECTA 2021) (GLP2021) develop a Bayesian

sparse model that learns sparsity levels in linear regression.

GLP2021 test six high-dimensional datasets (Macro/Finance/Micro) and

find the posterior distribution rarely concentrates on a single sparse model.

- Two applications more strongly favor dense models with a full set of predictors.

- Only one application where the posterior density focuses on a sparse model.

- Those posterior distributions behave quite differently across applications.

⇒ illusion of sparsity

Link L1 and L2: no assumption, but posterior learning ⇒ Proportion of

non-zero coefficients is unknown and can be learned.
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A Tale of Two Philosophies: Sparse vs Dense

Traditional AP models demand an ex ante decision on sparsity or density.

Empirical findings frequently mirror prior assumptions instead of revealing

the actual structure of expected returns.

Can sparsity be treated not as a fixed assumption, but as an inferred

property of the data?
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Challenge and Motivation: Schrödinger’s Sparsity

Schrödinger’s cat

A cat, entangled with a quantum

system, remains in a superposition of

alive and dead states until observed.

The nature of AP models — sparse or

dense — are in a state of superposition

until empirical data is observed.
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High-dimensional AP Models

We examine the sparsity of AP models within the conditional latent factor

framework of IPCA. (It can also be tested in beta-pricing or SDF models.)

ri,t = α(Zi,t−1) + β(Zi,t−1)ft + ϵi,t

where α(Zi,t−1) = α0 +α1Zi,t−1

β(Zi,t−1) = β0 + β1(IK ⊗ Zi,t−1)

ϵi,t ∼ N
(
0, σ2

i

)

ft : K latent factors (can be extended to both observable and latent

factors).

Zi,t−1: L characteristics.
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Research Questions

Built on IPCA (Kelly, Pruitt, and Su, JFE 2019; Bybee, Kelly, and Su, RFS

2023) and Bayesian unconditional latent factor model (Geweke and Zhou,

RFS 1996).

— A New Perspective: probability of char sparsity

Our focuses are the char-driven alphas (mispricings) and betas (loadings).

— Our approach does not aim to benchmark against its frequentist

counterpart but rather emphasizes targeted Bayesian model evaluation.

We allow sparsity prob. to be data-inferred (following GLP2021) or

exogenously fixed, enabling model performance evaluation under varying

sparsity assumptions.
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Empirical Highlights

Best-performing models are neither extremely sparse nor dense.

When the imposed sparsity matches the endogenous level inferred by the

posterior, model performance peaks.

Sparsity prob. change across test asset sets and positively correlate with

pricing difficulty.

- 5×5 ME-BM portfolios ⇒ Sparse model

- Alphas is generally sparser than betas.

- Assets with higher Jensen’s alpha ∼ denser mispricings.

- Assets with higher Sharpe ratios ∼ denser loadings.

Sparsity is time-varying. Models grow sparser during recessions.

Models integrating observable and latent factors outperform.
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Model



Spike-and-Slab Prior

Spike-and-slab prior, a Bayesian variable selection prior.

Let d = 1 or 0 denote selected or not selected, the spike and slab prior on β is

β | d ∼ dN
(
0, ξ21σ

2
)
+ (1− d)N

(
0, ξ20σ

2
)

P(d = 0) = 1− P(d = 1) = q

Hence, when ξ1 is related large and ξ0 shrinks to zero:

β =

0 with prob. q The regressor is not chosen.

N
(
0, γ2

)
with prob. 1− q The regressor is chosen.
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Spike-and-Slab Prior

β =

0 with prob. q The regressor is not chosen.

N
(
0, γ2

)
with prob. 1− q The regressor is chosen.

Standard spike-and-slab prior: q is a specific value.

GLP2021: q has its prior so that one can sample: q ∼ Beta(a, b)

- These priors probabilistically balance variable selection and shrinkage.

q0 1

lower prob. of sparsity higher prob. of sparsity

Prior settings of q ̸= precise control of sparsity levels!
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Priors Over Sparsity Structures

ri,t = α0 +α1Zi,t−1 + β0ft + β1[ft ⊗ Zi,t−1] + ϵi,t .

Independent spike-and-slab priors on α1 and β1

Separate priors: different sparsity levels of alpha and beta.

[α1]l ∼

N (0, γ2
α) if dα

l = 1

0 if dα
l = 0

dα
l ∼ Bernoulli(1− qα)

qα ∼ Beta(aqα , bqα)

γ2
α ∼ IG (Aγα/2,Bγα/2)

[β1]l ∼

N (0, γ2
β) if dβ

l = 1

0 if dβ
l = 0

dβ
l ∼ Bernoulli(1− qβ)

qβ ∼ Beta(aqβ , bqβ )

γ2
β ∼ IG

(
Aγβ/2,Bγβ/2

)
Higher posterior mean of qα (or qβ), higher prob. of sparsity.
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Prior for Exogenous Fixed Sparsity Level

ri,t = α0 +α1Zi,t−1 + β0ft + β1[ft ⊗ Zi,t−1] + ϵi,t .

Directly control the sparsity level (i.e., control # selected char.).

Mα and Mβ restrict the number of char. driving alpha and beta.

(Separate) joint priors:

(dα
1 , dα

2 , · · · , dα
L ) ∼

[
L∏

l=1

Bernoulli(1− qα)

]
× I

(
L∑

l=1

dl = Mα

)
,

(dβ
1 , d

β
2 , · · · , d

β
L ) ∼

[
L∏

l=1

Bernoulli(1− qβ)

]
× I

(
L∑

l=1

dl = Mβ

)
.

Larger Mα (or Mβ), lower sparsity level.
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AP Identification Strategy**

We follow Kelly, Pruitt, and Su (JFE 2019).

Γα = [α0,α1] and Γβ = [β0,β1].

Γ⊤
β Γβ = IK :

The unconditional second-moment matrix of ft is diagonal with descending

diagonal entries, and restricts the mean of ft to be non-negative.

- To preserve the structure of Γβ : impose these constraints on each factor.

Γ⊤
αΓβ = 01×K

- Regressing Γα on Γβ and replacing Γα with the residual from this regression.
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Schrödinger’s Sparsity



Data

Main test assets:

P-Tree (Cong, Feng, He, and He, JFE 2025) test assets (1990-2024)

- Sequential decreasing alphas by boosted trees

- Constructed based on the past sample (1980-1989)

Other test assets:

Portfolios

- 25 ME/BM portfolios

- 360 bivariate-sorted portfolios

- 610 univariate-sorted portfolios

Individual stocks

- stocks ranked 1st to 500th by average market equity (500 Big)

- stocks ranked 501st-1000th by average market equity (500 Small)
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(i) Probability of Sparsity

Table 1: Model Performance Under Different Priors

CSR2 (qα, qβ)

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Unrestricted # sel char.

(qα prior mean,

qβ prior mean)

0.9,0.9 29.2 43.7 58.9 0.66,0.62 0.83,0.57 0.93,0.64

0.5,0.9 29.4 43.4 57.0 0.51,0.62 0.68,0.60 0.77,0.64

0.1,0.9 29.4 43.1 56.6 0.37,0.62 0.53,0.60 0.63,0.66

0.9,0.5 29.3 44.3 59.9 0.66,0.47 0.82,0.47 0.93,0.50

0.5,0.5 29.5 42.4 58.8 0.52,0.47 0.69,0.43 0.79,0.50

0.1,0.5 29.5 43.6 58.1 0.37,0.47 0.53,0.46 0.64,0.49

0.9,0.1 29.5 46.9 58.3 0.66,0.31 0.83,0.31 0.92,0.33

0.5,0.1 29.6 42.5 57.9 0.52,0.31 0.69,0.30 0.79,0.34

0.1,0.1 29.7 45.6 53.7 0.37,0.31 0.54,0.31 0.62,0.35

Panel B: Fixed # sel char. ...

Panel C: No sparsity

(Mα,Mβ) 20,20 29.9 36.9 45.2 / / /

CSR2 Benchmark: CAPM
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(i) Probability of Sparsity

Prob. of sparsity:

- Between the extremes of highly sparse (prob. close to 1) and fully dense (prob.

close to 0) specifications.

- Mispricings show higher sparsity than loadings — theoretically complementarity

- Sparsity patterns change with the number of latent factors K .

K ↑, qβ decreases or remains low, qα increases substantially.

Models’ performance:

- Robust across prior settings and increasing with more factors.

- Models incorporating probabilistic sparsity consistently outperform both fully

dense specifications (Panel C).
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(ii) Effect of Misspecified Assumption of Sparsity

Table 1: Model Performance Under Different Priors

CSR2 (qα, qβ)

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Unrestricted # sel char.

(qα prior mean,

qβ prior mean)

0.9,0.9 29.2 43.7 58.9 0.66,0.62 0.83,0.57 0.93,0.64

0.5,0.9 29.4 43.4 57.0 0.51,0.62 0.68,0.60 0.77,0.64

0.1,0.9 29.4 43.1 56.6 0.37,0.62 0.53,0.60 0.63,0.66

0.9,0.5 29.3 44.3 59.9 0.66,0.47 0.82,0.47 0.93,0.50

0.5,0.5 29.5 42.4 58.8 0.52,0.47 0.69,0.43 0.79,0.50

0.1,0.5 29.5 43.6 58.1 0.37,0.47 0.53,0.46 0.64,0.49

0.9,0.1 29.5 46.9 58.3 0.66,0.31 0.83,0.31 0.92,0.33

0.5,0.1 29.6 42.5 57.9 0.52,0.31 0.69,0.30 0.79,0.34

0.1,0.1 29.7 45.6 53.7 0.37,0.31 0.54,0.31 0.62,0.35

Panel B: Fixed # selected char.

(Mα,Mβ)

2,2 25.4 49.3 48.4 / / /

10,2 28.0 51.1 50.0 / / /

18,2 25.2 46.9 37.8 / / /

2,10 28.8 50.9 59.6 / / /

10,10 29.6 38.3 41.1 / / /

18,10 27.2 40.9 39.5 / / /

2,18 29.8 54.9 56.1 / / /

10,18 29.9 34.5 51.0 / / /

18,18 27.5 39.3 42.1 / / /
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(ii) Effect of Misspecified Assumption of Sparsity

Fixing Mα and Mβ significantly affect model performance.

Model performance peaks when fixed inclusion sizes in the constrained

model match the sparsity levels of the probabilistic model.

- K = 5, the best model is inferred at a sparsity level near (Mα,Mβ) = (1, 10),

while the best fixed model is at (2, 10).

Learn rather than impose sparsity in conditional asset pricing models.
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(iii) Excluding Mispricing

ri,t = β0ft + β1[ft ⊗ Zi,t−1] + ϵi,t .

Table 2: Model Performance under Different Priors (without Mispricing)

CSR2 qβ

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Unrestricted # sel char.

qβ prior mean

0.9 20.4 52.8 58.1 0.62 0.59 0.60

0.5 20.5 53.2 58.3 0.48 0.43 0.50

0.1 20.6 53.6 60.1 0.32 0.27 0.26

Panel B: Fixed # sel char.

Mβ

2 15.6 49.5 50.4 / / /

10 20.1 52.1 58.5 / / /

18 19.9 53.8 60.6 / / /

With a prior mean of 0.9 (K = 5), the posterior qβ is 0.64–0.66 with mispricing

and 0.60 without.

⇒ Without a mispricing channel, loadings must capture more return variation,

requiring a denser specification.
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Schrödinger’s Sparsity Everywhere



(i) Test Assets and Sparsity

Table 3: Sparsity for Different Test Assets

CSR2 TP. Sp (qα, qβ)

Panel A: P-Tree

100 42.4 1.00 0.69,0.43

200 51.0 1.09 0.60,0.37

400 45.2 0.49 0.54,0.32

Panel B: Ind. Stock

500 big 31.4 0.80 0.61,0.29

500 small 3.9 3.64 0.49,0.38

Panel C: Others

ME/BM25 33.6 0.25 0.80,0.50

Bi360 7.8 1.03 0.50,0.20

Uni610 48.0 0.61 0.44,0.20

Sparsity levels change across different types of test assets.

E.g., ME/BM 25 sparser.

19 / 26



(i) Test Assets and Sparsity

Table 3: Sparsity for Different Test Assets

CSR2 TP. Sp (qα, qβ)

Panel A: P-Tree

100 42.4 1.00 0.69,0.43

200 51.0 1.09 0.60,0.37

400 45.2 0.49 0.54,0.32

Panel B: Ind. Stock

500 big 31.4 0.80 0.61,0.29

500 small 3.9 3.64 0.49,0.38

Panel C: Others

ME/BM25 33.6 0.25 0.80,0.50

Bi360 7.8 1.03 0.50,0.20

Uni610 48.0 0.61 0.44,0.20

Within the same category of test assets, a larger number of assets

generally requires more char.
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ME/BM25 33.6 0.25 0.80,0.50

Bi360 7.8 1.03 0.50,0.20

Uni610 48.0 0.61 0.44,0.20

Those assets that are more difficult to price tend to require more char. to

capture alpha.
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(i) Test Assets and Sparsity

Table 3: Sparsity for Different Test Assets

CSR2 TP. Sp (qα, qβ)

Panel A: P-Tree

100 42.4 1.00 0.69,0.43

200 51.0 1.09 0.60,0.37

400 45.2 0.49 0.54,0.32

Panel B: Ind. Stock

500 big 31.4 0.80 0.61,0.29

500 small 3.9 3.64 0.49,0.38

Panel C: Others

ME/BM25 33.6 0.25 0.80,0.50

Bi360 7.8 1.03 0.50,0.20

Uni610 48.0 0.61 0.44,0.20

Substantial heterogeneity in sparsity probabilities across standard test

assets.
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Alpha, Sharpe ratio and sparsity

Figure 1: Sparsity Levels and Pricing Difficulty of Test Assets

0.70

0.75

0.80

0.85

0.0 0.3 0.6 0.9 1.2

Alpha (abs, %)

q
α

Bi
Uni
PTree

(a) qα and Alpha

0.3

0.4

0.5

0.6

1 2 3 4

Sharpe Ratio

q
β

Bi
Uni
PTree

(b) qβ and Sharpe Ratio

Sparsity levels vary across test assets, reflecting pricing difficulty

differences.
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(ii) Marcro Regimes and Sparsity Probability

Table 4: Time Variation Analysis: Sparsity in Structural Breaks / Business Cycles

CSR2 TP. Sp (qα, qβ)

Panel A: Sequential segmentation

Regime1 48.5 1.92 0.72,0.56

Regime2 24.1 0.82 0.71,0.53

Regime3 59.7 0.72 0.77,0.46

Panel B: Macro-driven segmentation

Normal 53.8 1.18 0.67,0.46

Recession 14.2 0.77 0.76,0.50

Panel C: Full period

Whole 42.4 1.00 0.69,0.43

Settings of time periods:

- Breakpoints in Smith and Timmermann (RFS 2021): July 1998 and June 2010.

- Define recession periods based on the Sahm Rule (88 months).

AP models tend to be sparser during recessions.
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(ii) Marcro Regimes and Sparsity Probability

Recession-induced sparsity

- Heightened market uncertainty:

Investors tend to focus on macroeconomic and systematic risks

- Large macroeconomic shocks:

Disrupt the relationship between firm char. and return variation

Regime-based char. importance

- During recessionary periods, both the bid-ask spread and 12-month momentum

exhibit substantially lower posterior inclusion prob. for mispricing.

- Characteristics such as asset growth , net stock issues , operating profitability

and R&D-to-market equity lose their ability to explain systematic risk.
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Schrödinger’s Sparsity Everywhere!

Sparsity Prob. change across both cross-sectional and time-series dimensions.

⇒ i) Test assets / Pricing difficulty; ii) Time periods / Macro conditions

Assuming AP model to be either sparse or dense ex ante may be wrong.
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Conditional Model for Observable

Factors and Sparsity



Model with Observable and Latent Factors

In the conditional observable factor model, alpha and beta are sparse

functions of high-dimensional char.

Augmenting latent factors aids in recovering unspanned risk factors within

observable factor models.

ri,t = α(Zi,t−1) + β(Zi,t−1)
[
fOt , f

L
t

]
︸ ︷︷ ︸

Ft

+ϵi,t

= α0 +α1Zi,t−1︸ ︷︷ ︸
mispricing

+β0f
O
t + β1[f

O
t ⊗ Zi,t−1]︸ ︷︷ ︸

obs. factors, conditional beta

+ β0f
L
t + β1[f

L
t ⊗ zi,t−1]︸ ︷︷ ︸

latent factors, dynamic loadings

+ϵi,t .
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Augmented Observable Factor Models

Table 5: Augmented Observable Factor Models

CSR2 TP.Sp (qα, qβ ) αRMSE

Panel A: only obs

MKT 14.9 0.57 0.55,0.37 0.0032

FF3 27.3 0.60 0.65,0.26 0.0026

FF5 50.4 1.13 0.74,0.39 0.0014

Panel B: only latent

LF1 29.5 0.35 0.52,0.47 0.0036

LF3 45.0 1.00 0.68,0.58 0.0021

LF5 56.8 1.02 0.77,0.66 0.0011

Panel C: obs + latent

MKT+LF1 53.9 0.87 0.69,0.35 0.0015

MKT+LF5 56.5 1.06 0.79,0.48 0.0005

FF3+LF1 41.6 1.07 0.67,0.27 0.0014

FF3+LF5 57.4 1.26 0.80,0.56 0.0003

FF5+LF1 50.6 1.21 0.67,0.35 0.0012

FF5+LF5 55.8 1.25 0.79,0.58 0.0005

Panel D: uncond. model

MKT / 0.57 / 0.0060

FF3 11.5 0.60 / 0.0056

FF5 49.3 1.13 / 0.0042

A vs D: The informational value of conditioning: Our framework uncovers

pricing structures via latent factor models and adaptive sparsity.
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Table 5: Augmented Observable Factor Models
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Panel A: only obs

MKT 14.9 0.57 0.55,0.37 0.0032
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FF5+LF1 50.6 1.21 0.67,0.35 0.0012

FF5+LF5 55.8 1.25 0.79,0.58 0.0005

Panel D: uncond. model

MKT / 0.57 / 0.0060

FF3 11.5 0.60 / 0.0056

FF5 49.3 1.13 / 0.0042

A vs B: more variation in returns is captured by latent factors ⇒

Reducing # characteristics required to explain these components.
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Table 5: Augmented Observable Factor Models

CSR2 TP.Sp (qα, qβ ) αRMSE

Panel A: only obs

MKT 14.9 0.57 0.55,0.37 0.0032

FF3 27.3 0.60 0.65,0.26 0.0026
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Panel D: uncond. model

MKT / 0.57 / 0.0060

FF3 11.5 0.60 / 0.0056

FF5 49.3 1.13 / 0.0042

A vs C: Adding latent factors helps mitigate model misspecification.

- α RMSE: decreases after introducing latent factors.
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Summary

An important problem: How can researchers determine the appropriate model

assumption without first examining the data?

⇒ Schrödinger’s Sparsity: the true state remains unknowable until observed

- treating sparsity as a probabilistic property rather than a binary assumption

A new approach, a flexible Bayesian framework for IPCA

- Utilizing the independent/joint spike-and-slab priors

- Endogenously determine whether the model is sparse or dense, without

imposing prior assumptions on sparsity or density.

- Exogenously control the sparsity level of the model.

26 / 26



Summary

An important problem: How can researchers determine the appropriate model

assumption without first examining the data?

⇒ Schrödinger’s Sparsity: the true state remains unknowable until observed

- treating sparsity as a probabilistic property rather than a binary assumption

Empirical findings:

- Well-performing models often lie between the extremes of full sparsity and full

density.

- Sparsity prob. change with the nature of the test assets

* Sparsity is linked to pricing difficulty.

- Sparsity increases during recessions, as fewer firm char. remain relevant, and

macroeconomic risk becomes more dominant.

⇒ How, when, and why firm characteristics matter in the cross section of returns.
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