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Sparsity

A central challenge in modern statistics: addressing high-dimensional problems

Sparse modeling

selection for sparse models: L1 penalty

Usually, researchers assume that the underlying signal is sparse, and

advanced methods are designed to recover such signals effectively.

Empirical asset pricing:

Feng et al. (2020) and Bryzgalova et al. (2023):

Evidence of sparsity in factor risk prices within cross-sectional regressions

Assumption: the cross section of returns is driven by a limited number of

factors.
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Sparsity

A central challenge in modern statistics: addressing high-dimensional problems

Dense modeling

Shrinkage: L2 penalty

Empirical asset pricing:

Kozak, Nagel, and Santosh (2020):

A characteristics-sparse SDF cannot explain the cross section of returns.

Kozak and Nagel (2023): Factors derived from characteristics through sorting

/ characteristic weighting / OLS cross-sectional regression slopes do not span the

SDF unless a large number of characteristics are used simultaneously.

Shen and Xiu (2025): When signals are weak, ridge regression outperforms

Lasso for prediction. Equivalently, the predictive model might not be sparse.
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Sparsity

Addressing high-dimensional problems is a central challenge in modern

statistics.

Statisticians have developed lots of tools:

- Shrinkage: L2 penalty.

- Selection for sparse models: L1 penalty.

Asset pricing

Sparse modeling

Dense modeling

These modeling outcomes are often artifacts of the imposed prior.

A less frequently explored question arises:

Are asset pricing models inherently sparse?
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Motivation: Illusion of Sparsity

Giannone, Lenza, and Primiceri (2021) (GLP) propose a Bayesian sparse model

that parametrizes the level of sparsity

Link L1 and L2: no assumption, but posterior.

They examine various types of economic data

- Macro / Finance / Micro

Findings: the posterior distribution does not typically concentrate on a

single sparse model.

⇒ This phenomenon highlights an illusion of sparsity in economic data.

They did not emphasize factors.
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Motivation: Schrödinger’s Sparsity

Existing approaches: require researchers to commit ex ante to either a sparse

(selection) or dense (shrinkage) specification prior to examining the cross

section and adhere to that assumption throughout the modeling process.

Schrödinger’s cat

We cannot determine whether the cat

is alive or dead until we open the box.

We cannot determine whether the

model is sparse or dense until we

“open the box.”
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Research Questions

We investigate whether asset pricing models are sparse within the conditional

latent factor structure of IPCA.

Following the idea of Giannone, Lenza, and Primiceri (2021) in examining

sparsity levels, we study the sparsity of characteristics in the conditional

latent factor model of Kelly, Pruitt, and Su (2019), which introduces

observable characteristics as instruments for loadings on latent factors.
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Contribution

Methodology Innovations

We propose a novel Bayesian sparse conditional (latent) factor model.

We permit sparsity levels to be freely estimated or fixed exogenously.

We separate the sparsity of alphas from that of betas.

We incorporate observable traded factors alongside latent ones.

- estimate conditional versions of well-known models

- recover unspanned components

Empirical Findings

· · ·
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Key Results

Best-performing models are neither extremely sparse nor fully dense.

∼ A substantial yet selective set of characteristics

When sparsity is imposed exogenously:

Highest performance ∼ the imposed level aligns with the endogenous level

selected by the posterior

Mispricing is typically sparser than factor loadings.

Complementary relationship: when factor loadings are dense, mispricing

becomes more concentrated, and vice versa.

Sparsity varies across test asset sets.

Fama–French 25 portfolios ∼ Sparse models

Sparsity is time-varying. Models become more sparse during recessions.

Models that combine observable and latent factors outperform those that

use either component alone.
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Full Model

ri,t = α(Zi,t−1) + β(Zi,t−1)ft + ϵi,t (1)

where α(Zi,t−1) = α0 +α1Zi,t−1

β(Zi,t−1) = β0 + β1(IK ⊗ Zi,t−1), ϵi,t ∼ N
(
0, σ2

i

)
ri,t : return of asset i at time t

ft : K latent factors

Zi,t−1: vector, L firm characteristics for asset i at time t − 1

We assume independent spike-and-slab priors on the regression coefficient

Giannone, Lenza, and Primiceri (2021).
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Core Notation: q

Spike-and-slab prior, a Bayesian variable selection prior.

P(β ̸= 0) = q, P(β = 0) = 1− P(β ̸= 0) = 1− q.

β =

N
(
0, γ2

)
with prob q The regressor is chosen. ∼ L2 penalty

0 with prob 1− q The regressor is not chosen. ∼ L1 penalty

Traditional spike-and-slab prior: q is a specific value.

Giannone et al., 2021: q has its prior so that we can sample q.

- These priors probabilistically interpolate between variable selection and

shrinkage, allowing the degree of sparsity to be estimated from the data.

q0 1
sparser denser
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P(β ̸= 0) = q, P(β = 0) = 1− P(β ̸= 0) = 1− q.

β =

N
(
0, γ2

)
with prob q The regressor is chosen. ∼ L2 penalty

0 with prob 1− q The regressor is not chosen. ∼ L1 penalty

Traditional spike-and-slab prior: q is a specific value.

Giannone et al., 2021: q has its prior so that we can sample q.

- These priors probabilistically interpolate between variable selection and

shrinkage, allowing the degree of sparsity to be estimated from the data.

Prior settings of q ̸= precise control of sparsity levels!
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Sparse BayesIPCA Model

ri,t = α0 +α1Zi,t−1 + β0ft + β1[ft ⊗ Zi,t−1] + ϵi,t .

Independent spike-and-slab priors on the regression coefficient (GLP)

Global prior:

The same sparsity level of mispricing (alpha) and factor loadings (beta)

[α1,β1]
iid∼

N
(
0, γ2

)
with prob q

0 with prob 1− q

q ∼ Beta(aq , bq),

γ2 ∼ IG(A/2,B/2)

α0,β0
iid∼ N

(
0, ξ2

)
, ξ2 ∼ IG(C/2,D/2)
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Sparse BayesIPCA Model

ri,t = α0 +α1Zi,t−1 + β0ft + β1[ft ⊗ Zi,t−1] + ϵi,t .

Independent spike-and-slab priors on the regression coefficient (GLP)

Separate priors:

Different sparsity levels of mispricing (alpha) and factor loadings (beta)

α1
iid∼

N
(
0, γ2

α

)
with prob qα

0 with prob 1− qα

, β1
iid∼

N
(
0, γ2

β

)
with prob qβ

0 with prob 1− qβ

qα ∼ Beta(aqα , bqα ), qβ ∼ Beta(aqβ , bqβ ),

γ2
α ∼ IG(Aα/2,Bα/2), γ2

β ∼ IG(Aβ/2,Bβ/2),
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Sparse BayesIPCA Model: Restricted the number of characteristics

ri,t = α0 +α1Zi,t−1 + β0ft + β1[ft ⊗ Zi,t−1] + ϵi,t .

We design joint priors to directly control the sparsity level (i.e., control the

number of selected characteristics).

M restricts the number of characteristics driving alpha (beta).

(Global) joint prior:

(τ1, τ2, · · · , τL) ∼
L∏

i=1

Bernoulli(L)× I

(
L∑

i=1

τi = M

)

(Separate) joint priors:

(τα1 , τα2 , · · · , ταL ) ∼
L∏

i=1

Bernoulli(L)× I

(
L∑

i=1

ταi = Mα

)

(τ
βk
1 , τ

βk
2 , · · · , τβk

L ) ∼
L∏

i=1

Bernoulli(L)× I

(
L∑

i=1

τβi = Mβ

)
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Empirical Findings

(i) Sparsity for P-Tree 100 Test Assets

(ii) Large Sets of Test Assets

Heterogeneous Roles of Characteristics

(iii) Time-varying Sparsity

Dynamic Roles of Characteristics

(iv) Resurrecting Conditional Observable Factors Model
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Dataset

Main test assets:

P-Tree (Cong et al., 2025, JFE) test assets, from Jan-1990 to Dec-2024,

monthly.

- Constructed based on monthly observations of U.S. stocks from 1980 to 2024.

- 20 Zi,t firm characteristics.

Other test assets:

25 ME/BM portfolios (FF25), 61 long-short portfolios for each

characteristic (LS61), 357 bivariate-sorted portfolios (Bi357).

500 stocks with the highest and 500 stocks with the lowest average

market equity (Big ind500 / Small ind500).
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(i) Sparsity for P-Tree 100 Test Assets

Figure 1: Panel Tree from 1980 to 1989
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(i) Sparsity for P-Tree 100 Test Assets

Table 1: Model Performance under Global Sparse Priors

CSR2 TP.Sp

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Unrestricted # selected chars.

q prior mean

0.1 29.37 43.66 55.57 0.35 1.36 0.92

0.5 29.54 43.63 54.79 0.35 1.44 0.92

0.9 29.71 43.62 53.89 0.35 1.50 0.95

Panel B: Fixed # selected chars.

M

2 25.44 52.49 51.02 0.44 1.11 0.48

10 29.53 38.32 41.51 0.35 0.87 1.12

18 27.48 39.31 42.02 0.33 0.55 0.95

Panel C: No sparsity

M 20 29.92 36.88 45.23 0.35 0.57 0.95

Benchmark: CAPM.

q prior mean is 0.1. K = 5 ∼ Mα = 1,Mβ = 9.
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(i) Sparsity for P-Tree 100 Test Assets

Table 2: Model Performance under Separate Sparse Priors on Alphas and Betas

CSR2 TP. Sp

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Unrestricted # selected chars.

(qα prior mean,

qβ prior mean)

0.1,0.1 29.17 44.09 59.20 0.34 0.75 0.71

0.5,0.1 29.37 43.27 58.47 0.35 0.77 0.79

0.9,0.1 29.41 43.54 58.00 0.35 1.14 0.68

0.1,0.5 29.29 43.53 57.82 0.34 0.75 1.00

0.5,0.5 29.48 42.49 56.84 0.35 1.01 1.14

0.9,0.5 29.53 43.65 54.94 0.35 1.17 0.92

0.1,0.9 29.48 45.11 58.72 0.34 0.99 0.77

0.5,0.9 29.64 42.48 56.84 0.35 1.00 1.14

0.9,0.9 29.73 44.13 56.69 0.35 1.27 0.90

Panel B: Fixed # selected chars.

(Mα,Mβ)

2,2 25.44 49.34 48.39 0.44 1.10 0.95

10,2 27.98 51.07 50.10 0.37 0.57 0.87

18,2 25.17 47.01 38.00 0.32 0.79 0.68

2,10 28.85 51.17 56.83 0.42 0.60 0.87

10,10 29.59 37.87 41.20 0.35 0.89 0.97

18,10 27.19 40.97 39.03 0.32 0.47 0.88

2,18 29.81 54.91 56.99 0.43 0.65 1.13

10,18 29.88 34.24 51.26 0.36 1.01 1.22

18,18 27.46 39.30 42.11 0.33 0.53 0.94

Benchmark: CAPM. 17 / 26



(i) Sparsity for P-Tree 100 Test Assets

Unrestricted # selected chars:

- Global prior:

q prior mean is 0.1. K = 5 ∼ Mα = 1,Mβ = 9.

- Separate priors:

Both prior means of qα and qβ are 0.1. K = 5 ∼ Mα = 1,Mβ = 10.

Fix # selected chars:

- Global prior: K = 5 ∼ Mα = 2,Mβ = 2

- Separate priors: K = 5 ∼ Mα = 2,Mβ = 18.

Best-performing models are neither extremely sparse nor fully dense.

# chars driving factor loading (beta) exceeds that of those driving

mispricing (alpha).

When sparsity is imposed exogenously, model performance is highest when

the imposed level aligns with the endogenous level selected by the

posterior.
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(ii) Large Sets of Test Assets

Table 3: Sparsity for Different Test Assets

Global prior Separate priors

q Mα Mβ qα qβ Mα Mβ

Panel A: P-Tree

100 0.48 5 11 0.31 0.59 4 12

200 0.60 7 14 0.40 0.67 5 14

400 0.70 9 15 0.47 0.85 9 18

Panel B: Ind. Stock

Small 500 0.62 11 13 0.51 0.65 9 13

Big 500 0.68 8 16 0.41 0.82 6 18

Panel C: Others

FF25 0.41 1 10 0.20 0.50 1 10

LS61 0.67 4 17 0.24 0.83 2 17

Bi357 0.81 11 19 0.50 0.90 10 19

Sparsity levels vary across different types of test assets.

E.g., FF25 sparser.
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Panel C: Others

FF25 0.41 1 10 0.20 0.50 1 10

LS61 0.67 4 17 0.24 0.83 2 17

Bi357 0.81 11 19 0.50 0.90 10 19

Panel A: Within the same category of test assets, a larger number of

assets generally requires more characteristics.
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Panel C: Others

FF25 0.41 1 10 0.20 0.50 1 10

LS61 0.67 4 17 0.24 0.83 2 17

Bi357 0.81 11 19 0.50 0.90 10 19

Panel B: Among test assets of the same type and size, those that are

harder to explain tend to require more characteristics to capture

mispricing.
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Global prior Separate priors
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Panel C: Others

FF25 0.41 1 10 0.20 0.50 1 10

LS61 0.67 4 17 0.24 0.83 2 17

Bi357 0.81 11 19 0.50 0.90 10 19

Panel B: Complementary relationship: when factor loadings are dense,

mispricing becomes more concentrated, and vice versa.
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(ii) Large Sets of Test Assets

Table 3: Sparsity for Different Test Assets

Global prior Separate priors

q Mα Mβ qα qβ Mα Mβ

Panel A: P-Tree

100 0.48 5 11 0.31 0.59 4 12

200 0.60 7 14 0.40 0.67 5 14

400 0.70 9 15 0.47 0.85 9 18

Panel B: Ind. Stock

Small 500 0.62 11 13 0.51 0.65 9 13

Big 500 0.68 8 16 0.41 0.82 6 18

Panel C: Others

FF25 0.41 1 10 0.20 0.50 1 10

LS61 0.67 4 17 0.24 0.83 2 17

Bi357 0.81 11 19 0.50 0.90 10 19

Panel C: There is substantial variation in the sparsity levels across

commonly used test assets.
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(iii) Time-varying Sparsity

Table 4: Time Variation Analysis: Sparsity in Regimes

Different periods

Regime1 Regime2 Regime3 Normal Recession Full

Panel A: Global prior

q 0.37 0.41 0.42 0.47 0.42 0.48

Panel B: Separate priors

qα 0.30 0.29 0.23 0.27 0.24 0.31

qβ 0.42 0.46 0.56 0.54 0.53 0.59

Settings of time periods:

- Follow breakpoints in Smith and Timmermann (2021) to split time periods.

(July 1998 and June 2010)

- Define recession periods based on the Sahm Rule, totaling 88 months.

Asset pricing models tend to be sparser during recessions.
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Schrödinger’s Sparsity

Sparsity levels vary across both cross-sectional and time-series dimensions.

⇐ i) Type and number of test assets; ii) Time periods / Macro conditions

Assuming the asset pricing model to be either sparse or dense a priori may

be inappropriate.

21 / 26



Empirical Findings

(i) Sparsity for P-Tree 100 Test Assets

(ii) Large Sets of Test Assets

Heterogeneous Roles of Characteristics

(iii) Time-varying Sparsity

Dynamic Roles of Characteristics

(iv) Resurrecting Conditional Observable Factors Model
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Model with Observable and Latent Factors

In the conditional observable factor model, alpha and beta can be (sparse)

functions of high-dimensional characteristics.

Augmenting latent factors helps recover unspanned components in

observable factor models.

ri,t = α(Zi,t−1) + β(Zi,t−1)
[
f̃t , ft

]
︸ ︷︷ ︸

Ft

+ϵi,t

= α0 +α1Zi,t−1︸ ︷︷ ︸
mispricing

+β0 f̃t + β1 [̃ft ⊗ Zi,t−1]︸ ︷︷ ︸
obs. factors, conditional beta

+ β0ft + β1[ft ⊗ zi,t−1]︸ ︷︷ ︸
latent factors, dynamic loadings

+ϵi,t .
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(iv) Resurrecting Conditional Observable Factors Model

Table 5: Augmented Observable Factor Models

CSR2 TP.Sp (qα, qβ ) β0,MKT α RMSE

Panel A: only obs

MKT 14.93 0.57 0.45,0.63 1.15 0.0032

FF5 50.38 1.13 0.26,0.61 1.07 0.0014

Panel B: only latent

LF1 29.48 0.35 0.49,0.53 / 0.0036

LF5 56.81 1.13 0.23,0.34 / 0.0011

Panel C: obs + latent

MKT+LF1 53.87 0.87 0.31,0.65 1.14 0.0015

MKT+LF5 56.45 1.39 0.24,0.46 0.98 0.0007

FF5+LF1 50.55 1.23 0.33,0.65 1.06 0.0012

FF5+LF5 60.33 1.53 0.18,0.42 0.95 0.0001

Panel D: uncond. model

MKT / 0.57 / 1.19 0.0060

FF5 49.25 1.13 / 1.09 0.0042

Benchmark: CAPM.

Panel A v.s. Panel C: Jointly considering both observable and latent

factors helps mitigate model misspecification.

- β0,MKT: be closed to 1 after introducing latent factors.

- α RMSE: decreases after introducing latent factors.
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Panel D: uncond. model

MKT / 0.57 / 1.19 0.0060

FF5 49.25 1.13 / 1.09 0.0042

Benchmark: CAPM.

Panel A v.s. Panel D: The conditional factor model outperforms the

unconditional model in cross-sectional explanatory power.
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(iv) Resurrecting Conditional Observable Factors Model

Figure 2: Characteristics Importance in Alphas and Betas across Different Models
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Summary

An important research problem: Are the asset pricing models sparse?

Schrödinger’s Sparsity

A new approach, the BayesIPCA Model, combines the Bayesian framework of

factor estimation and the characteristics-based model (IPCA).

An important extension for considering the spike-and-slab prior while

estimating the conditional (latent) factor model.

By avoiding pre-specified assumptions on sparsity or density, our approach

endogenously determines whether the model is sparse or dense.
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Summary

An important research problem: Are the asset pricing models sparse?

Schrödinger’s Sparsity

A new approach, the BayesIPCA Model, combines the Bayesian framework of

factor estimation and the characteristics-based model (IPCA).

An important extension for considering the spike-and-slab prior while

estimating the conditional (latent) factor model.

By avoiding pre-specified assumptions on sparsity or density, our approach

endogenously determines whether the model is sparse or dense.

Based on our method, we can:

Identify the global / separate sparsity levels of the asset-pricing model

Investigate the characteristics that drive mispricing and factor loadings, and

assess their relative importance

Resurrect the conditional observable factors model
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Thank you!



Technical details



Evaluation Measures

CSR2 = 1−

∑N
i=1

(
1
Ti

∑Ti
t=1(ri,t − r̂i,t)

)2

∑N
i=1

(
1
Ti

∑Ti
t=1(ri,t − βiMktRFt)

)2 ,

where r̂i,t = β̂(zi,t−1)Ft .

Why cross-sectional R2?

Sharpe ratio of the factor-efficient portfolio (Investment)

Cross-sectional R2 (Asset pricing)

IPCA factors generated by portfolios have much lower Sharpe ratios than their

individual stock counterparts.

CS R2 is difficult to calculate for the unbalanced individual stock return panel.

=⇒ BK proposes using Total R2, which is directly related to the objectives of

IPCA but does not measure traditional pricing errors.



Review: Bayesian APT (Arbitrage Pricing Theory) Factor Model

Geweke and Zhou (1996)

rt = α+ βft + ϵt

rt = (r1,t , · · · , rN,t): a vector of returns of N asset at time t

α = E[rt ], the expected return on asset.

“pervasive” factor assumptions:

E[ft ] = 0, E[ft f ′t ] = I, E(ϵt | ft) = 0, E[ϵtϵ′t | ft ] = Σ.

Gibb sampler, draw α, β and Σ.

ft and rt are jointly normally distributed.

Draw f conditional on µ, β, Σ and the data: ft

rt

 ∼ N
[ 0

α

 ,

 I β′

β ββ′ +Σ

].
E(ft | α,β,Σ, rt) = β′(ββ′ +Σ)−1(rt −α),

Cov(ft | α,β,Σ, rt) = I− β′(ββ′ +Σ)−1β.



Review: IPCA

Kelly, Pruitt, and Su (2019)

ri,t = z′i,t−1Γα + z′i,t−1Γβft + ϵi,t

ri,t = α(Zi,t−1) + β(Zi,t−1)ft + ϵi,t

where α(Zi,t−1) = Z′
i,t−1Γα = α1Zi,t−1

β(Zi,t−1) = Z′
i,t−1Γβ = β1(IK ⊗ Zi,t−1)

Estimate of α1, β1 and ft by optimization:

min
Γβ ,Γα,f

T∑
t=1

(
rt − Zt−1Γβ ft − Zt−1Γα

)′ (
rt − Zt−1Γβ ft − Zt−1Γα

)
.

Method: Alternating Least Square (ALS)

Some conclusions:

- Dynamic betas (parameterized functions of observable characteristics)

- Accept α1 = 0 (Γα = 0).



Tables

Alpha Tests in Different Models

# α0 and α1,i ̸= 0 p-value

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Unrestricted # selected chars.

q prior mean

0.1 10 5 1 0 0 0

0.5 10 5 1 0 0 0

0.9 10 5 1 0 0 0

Panel B: Fixed # selected chars.

M

2 4 2 2 0 0 0

10 14 4 3 0 0 0

18 14 12 9 0 0 0

20 21 18 16 0 0 0



Tables

Number of Selected Characteristics in Different Models

Mα Mβ

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Global prior

q prior mean

0.1 10 5 1 10 11 9

0.5 10 5 2 10 11 9

0.9 10 5 1 11 11 9

Panel B: Separate priors

(qα prior mean,

qβ prior mean)

0.1,0.1 10 5 1 10 11 10

0.5,0.1 10 5 1 10 11 10

0.9,0.1 10 5 1 10 11 10

0.1,0.5 10 4 1 10 12 10

0.5,0.5 10 4 2 10 12 14

0.9,0.5 10 5 2 10 11 10

0.1,0.9 10 5 1 11 11 11

0.5,0.9 10 4 2 11 12 14

0.9,0.9 10 5 2 11 11 14



(ii) Time-varying Sparsity: Dynamic Roles of Characteristics

Figure 3: Changing Roles of Characteristics in Regimes
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(iii) Large Sets of Test Assets: Heterogeneous Roles of Characteristics

Figure 4: Heterogeneous Characteristics in Test Assets (mispricing)
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(iii) Large Sets of Test Assets: Heterogeneous Roles of Characteristics

Figure 5: Heterogeneous Characteristics in Test Assets (factor loading)
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