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Background: Beta Pricing Models

Beta-pricing models, such as CAPM, provide a foundational

framework for explaining cross-sectional expected returns via factor

risk premia and asset-factor exposures (betas).

E (rt) = Bλ

The two-pass regression is a standard estimation approach.

Asset-specific time series regression for betas, factor exposures

rt,i = ai + βi ft + et,i , i = 1, ...,N

Cross-sectional regression for lambdas, risk premia

r̄t,i = β̂iλ+ αi , i = 1, ...,N
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Background: Factor Zoo

Traded Factors:

excess market return

small-minus-big (size), high-minus-low (value) (e.g., Fama and

French, 1993, JFE)

up-minus-down (momentum) (e.g., Jegadeesh and Titman, 1993, JF)

...

Nontraded Factors:

consumption growth (e.g., Breeden et al., 1989, JF)

market liquidity (e.g., Pastor and Stambaugh, 2003, JPE)

intermediary capital ratio(e.g., He et al., 2017, JFE)

...
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Motivation: Model Comparison

Comparing Traded Factor Models:

GRS test (Sharpe Ratio Increase) (e.g., Gibbons, Ross, and Shanken,

1989, ECTA)

Bayesian Marginal Likelihood (Bayesian GRS-type comparison) (e.g.,

Barillas and Shanken,2018, JF, Chib, Zeng, and Zhao,2020, JF)

Only applies to traded factors

Comparing Models with Nontraded Factors:

Two-pass Cross-Sectional R2 (e.g., Kan, Robotti, and Shanken,

2013, JF)

CSR2 tends to increase with more factors.

Hansen-Jaganathan Distance (e.g., Kan and Robotti, 2009, RFS)

HJD tends to decrease with more factors.
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Motivation: Weak Factors

Most of the nontraded factors are weakly correlated with test assets,

which will cause the problem of reduced-rank of loading matrix B.

Inference on risk premia becomes invalid with weak factors. (e.g.,

Kan and Zhang,1999, JF; Kleibergen, 2009, JoE).

F-rank statistics to test the identification of risk premia. (e.g.,

Kleibergen and Zhan,2020, JF)

Giglio, Xiu, and Zhang (2025, JF) perform test assets selection and

remove test assets exposed to weak factors

We provide a unified framework for simultaneous beta-pricing model

comparison and risk premia estimation, which can exclude weak factors.
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Our Solution: Bayesian Marginal Likelihood Comparison

We develop a Bayesian framework for estimating beta-pricing models

with traded and nontraded factors via marginal likelihoods.

Simulations confirm that this criterion avoids the overfitting bias of

traditional metrics such as cross-sectional R2 and H-J distance.

Empirically, the optimal model selects 8 traded factors, excluding all

nontraded ones, and achieves excellent out-of-sample performance.
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Simulation Evidence: Model Comparison

True model: MKTRF+SMB+HML+HKMcapital

All combinations of models:

6 traded factors and 4 nontraded factors (1008 models)

Average across 100 simulations

Top 10 marginal likelihood models logML rank CSR2 H-J D

MKTRF+SMB+HML+HKMcapital 55337.2 1.0 62.6 0.0171

MKTRF+SMB+HML+CMA+HKMcapital 55284.7 3.7 63.4 0.0168

MKTRF+SMB+HML+RMW+HKMcapital 55284.5 3.8 63.3 0.0168

MKTRF+SMB+HML+UMD+HKMcapital 55284.1 3.9 63.5 0.0168

MKTRF+SMB+HML+PEAR+HKMcapital 55278.8 5.1 63.5 0.0168

MKTRF+SMB+HML+LIQ+HKMcapital 55278.8 5.1 63.6 0.0167

MKTRF+SMB+HML+PCEND+HKMcapital 55276.8 5.6 63.4 0.0169

MKTRF+SMB+HML 55243.6 11.5 48.0 0.0203

MKTRF+SMB+HML+RMW+CMA+HKMcapital 55231.2 13.0 64.1 0.0165

MKTRF+SMB+HML+CMA+UMD+HKMcapital 55231.1 13.1 64.2 0.0165
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Empirical Highlight: Model Comarison

10 traded factors + 8 Nontraded factors:

MKTRF, SMB, HML, CMA, RMW, UMD, BAB, QMJ, IA, ROE

IndProd, Liq, LTY, M2 SA, PCEDG, PCEND, HKMcapital, PEAR

Rank Top 5 Model logML CSR2 H-J D Prob

1 MKTRF + SMB + HML + RMW + CMA + UMD + BAB + QMJ 322024 49.03 0.0071 1

2 MKTRF + SMB + HML + RMW + CMA + UMD + BAB + QMJ + ROE 322008 49.68 0.0071 0

3 MKTRF + SMB + HML + RMW + CMA + UMD + BAB + QMJ + HKMcapital 321905 49.10 0.0071 0

4 MKTRF + SMB + HML + RMW + CMA + UMD + BAB + QMJ + ROE +

HKMcapital

321895 49.74 0.0071 0

5 MKTRF + SMB + HML + RMW + CMA + UMD + BAB + QMJ + PCEDG 321891 49.10 0.0071 0

Model averaging and model selection are equivalent when the top-1

model has a probability of almost 1.
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Model



Model

Assume that the distributions for traded (T) (e.g., Fama-French

factors), nontraded factors (NT) (e.g., macroeconomic innovations),

and returns are normal and take the stationary form
f T
t

f NT
t

rt

 ∼ N




µT

µNT

µr

 ,


ΣT ΣT ,NT ΣT ,r

ΣNT ,T ΣNT ΣNT ,r

Σr ,T Σr ,NT Σr




Now assume that these factors are in the SDF Mt , and suppose,

following Hansen and Jagannathan (1997), that Mt is given by

Mt = 1− λ′Σ−1
f (ft − µf ), λ = (λT ,λNT )
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Model (contd)

Under the no-arbitrage condition, we have the pricing restrictions

E[Mtf T ′

t ] = 0, E[Mtr ′t ] = 0

From the first of these pricing restrictions, one can show that

µT = λT

and from the second that

µr = Bλ = BTλT + BNTλNT

where B = Σf ,rΣ
−1
f is the loading matrix.
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Model (contd)

Inserting these two pricing conditions together into the distribution

of returns conditional on the factors, we get

rt = BNTλNT+BT f T
t +BNT (f NT

t −µNT )+et , et ∼ N (0,Σe). (1)

With the distributional assumption of the factors,

ft = µ+ ut , ut ∼ N (0,Σu) (2)

we get a restricted TS model that can be used to estimate all the

parameters in one pass (Pastor and Stambaugh, 2003).
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Likelihood of the Model

The factor’s mean is estimated, rather than demeaned ex ante

ft = µ+ ut ,ut ∼ N (0,Σu)

rt = BNTλNT + BT f T
t + BNT (f NT

t − µNT ) + et , et ∼ N (0,Σe)

The likelihood of the model is given by

L = P(R | F ,λ,B,Σe ,µ)P(F | µ,Σu)

∝ −1

2

T∑
t=1

e ′
tΣ

−1
e et −

1

2

T∑
t=1

u′
tΣ

−1
u ut .

Likelihood integrates cross-sectional pricing constraints and

time-series variations.
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Bayesian Marginal Likelihood

Model comparison based on the likelihood?

Likelihood increases when adding more factors.

The marginal likelihood integrates over parameters.

ML =

∫ ∫
P(R | F ,λ,B,Σe ,µ)P(F | µ,Σu)P(λ | B,Σe)

× P(B | Σe ,µ)P(Σe | µ)P(µ | Σu)P(Σu) dλ dB dΣe dµ dΣu

For weak factors, similar to the ridge penalty, increasing the

dimension of B will decrease the ||R − FB||2 but increase ||B||2.

The prior of B is a normal density proportional to exp(−||B||2)

ML =

∫
p(θ)lik(data|θ)dθ ∝

∫
exp(−||R − FB||2 − ||B||2)dθ
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Bayesian Model Comparison for Beta-Pricing Model

We have a full set of factors, which we define as f ∗. Different

models choose different combinations within this full set

The factor model is estimated based on this full set of factors.

f ∗
t = µ+ ut , ft ⊂ f ∗

t , ut ∼ N (0,Σu)

The return model is estimated based on the selected factors.

rt = BNTλNT + BT f T
t + BNT (f NT

t − µNT ) + et

et ∼ N (0,Σe)

We must consider the full set of factors, f ∗, for model comparison,

with the marginal likelihood comparable.
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Prior Distribution*

We rely on the training sample prior distribution to make valid model

comparisons (e.g., Chib and Zeng,2020, JBES, Chib et al.,2024 MS)

The model-specific priors must be proper for valid model comparison.

To ensure that differences in marginal likelihood reflect genuine

model fit rather than variations in prior specifications, the prior

distributions must be comparable across models.

The chosen priors should be minimally subjective, requiring little

user input while maintaining robustness in inference.
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MCMC*

The estimation is performed through the Gibbs Sampler.

Output from this sampling is used to estimate the marginal

likelihood by Chib (1995)’s method.
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Simulation



Data

Simulation uses parameters calibrated from empirical data.

Jan 1985 to Dec 2023.

A large cross-section of test assets, including 302 equity portfolios

downloaded from French’s website.

10 Traded factors:

MKTRF, SMB, HML, CMA, RMW, UMD, BAB, QMJ, IA, ROE

8 Nontraded factors:

IndProd, Liq, LTY, M2 SA, PCEDG, PCEND, HKMcapital, PEAR
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Simulation for Weak (Near Zero Loading) Factors

Data is simulated from

ft = µ+ ut , ut ∼ N (0,Σu)

rt = wBNTλNT +BT f T
t +wBNT (f NT

t −µNT )+et , et ∼ N (0,Σe)

where f T includes FF5 + UMD as traded factor benchmark, and the

nontraded factor is evaluated individually.

w is the weakness level. Smaller w means weaker.

log BF (Bayes Factor): difference in log Marginal Likelihood

between the models with and without the nontraded factor.
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Simulation for Weak (Near Zero Loading) Factors

Even if λ = 0, the strong factor (w = 10) is selected because it

helps explain the time-series variation.

Although λ = 0.01, the weak factor (w = 0.1) is dropped because

the overall contribution does not exceed the penalty.

log BF log BF log BF log BF log BF log BF log BF log BF

IndProd LIQ LTY M2 PCEDG PCEND HKMcapital PEAR

Panel A: λ = 0

w=10 10966 8787 10493 8052 5594 12329 14315 5045

w=1 103 34 80 20 -37 146 182 -49

w=0.1 -121 -121 -122 -123 -125 -122 -118 -123

Panel B: λ = 0.01

w=10 16763 8874 10654 21735 6055 17452 14005 5236

w=1 311 36 86 555 -33 344 180 -43

w=0.1 -121 -123 -123 -120 -121 -120 -120 -123
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Simulation for Constant-loading (level) Factors*

Another type of weak factor with constant loading: B does not have

sufficient cross-sectional variation.

Problems arise when there is more than one constant-loading factor.

Same loading BCLF1 = BCLF2 = 0.1 for all test assets.

CLF1 + CLF2 No CLF CLF1 CLF2

Panel A: λ = 0

120566 118824 118838 120641

Panel B: λ = 0.01

120523 118144 118740 120595
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Empirical



Absolute Test of Single Nontraded Factor

Third row: log BF (Bayes Factor)

IndProd LIQ LTY M2 SA PCEDG PCEND HKMcapital PEAR

CAPM

-0.68

[-0.83,-0.53]

-424

4.57

[3.56,5.56]

-308

1.36

[0.74,1.96]

405

-0.38

[-0.45,-0.32]

-312

0.82

[0.50,1.13]

340

-0.70

[-0.84,-0.56]

-300

1.78

[1.13,2.36]

1291

-3.68

[-4.24,-3.09]

-22

FF5

0.07

[-0.06,0.20]

-332

-1.43

[-2.31,-0.52]

-251

0.46

[-0.43,1.34]

-351

0.16

[ 0.09,0.24]

-427

-1.10

[-1.63,-0.55]

-122

-0.07

[-0.21,0.07]

-184

0.67

[-0.03,1.35]

1

0.40

[-1.05,1.69]

-239

All

-0.04

[-0.17,0.09]

-257

-2.48

[-3.51,-1.45]

-261

2.98

[ 2.15,3.75]

-174

0.15

[ 0.08,0.22]

-350

1.31

[ 0.45,1.99]

-130

-0.25

[-0.40,-0.11]

-162

1.50

[ 0.76,2.24]

-111

2.52

[ 1.55,3.40]

-182

LTY and PCEDG show marginal contribution over CAPM, and

HKMcapital even improves over FF5.

No nontraded factor enhances the All benchmark.
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Posterior Beta of Nontraded Factors (mostly zero)

HKMcapital (233) PEAR (278)

M2_SA (253) PCEDG (280) PCEND (243)

IndProd (244) Liq (265) LTY (225)
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Out-of-sample Model Performance*

Estimate model implied tangency portfolio weights (1985-2003).

Fix weights for out-of-sample evaluation (2004-2023).

Panel A : Model-implied

Bayes SR WLS SR Bayes MDD WLS MDD

Rank 1 0.983 0.600 0.231 0.428

Rank 2 0.975 0.613 0.246 0.407

Rank 3 0.878 0.588 0.307 0.445

CAPM 0.568 0.568 0.482 0.482

FF3 0.650 0.559 0.428 0.437

FF5 0.883 0.796 0.256 0.246

ALL 0.749 0.813 0.560 0.384

Panel B: EW and MVE

EW SR MVE SR EW MDD MVE MDD

0.526 0.566 0.491 0.472
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Summary



Summary

Our Bayesian framework is designed to enable beta-pricing model

estimation and comparisons via marginal likelihoods.

Empirically, we evaluate each nontraded factor for its incremental

contribution and find all tested nontraded factors to be weak.

Our framework selects models that satisfy cross-sectional pricing

constraints, capture time-series dynamics, and exclude weak factors.
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