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摘 要

本文档根据中山大学朱书尚教授讲授的《最优化理论与方法及其在金融中的应用》课

程及上海财经大学崔雪婷副教授讲授的《最优化理论基础》整理而成，意在为需要在

学术研究或实践中使用最优化方法的读者提供一份易读的基础参照。若本文档有需要

勘误之处，请联系 shxiao3-c@my.cityu.edu.hk
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0 最优化问题概述

0.1 最优化问题的定义

什么是最优化问题？最优化问题本质上是一个决策问题。

一个最优化问题包括：

• 决策变量 𝑥

• 一个或多个目标函数 𝑓 (𝑥)
• 一个由可行策略组成的集合，可由等式或不等式刻画

0.2 最优化问题的基本形式

min or max 𝑓 (𝑥1, · · · 𝑥𝑛)

𝑠.𝑡.𝑔𝑖 (𝑥1, · · · , 𝑥𝑛) ≤ 0 𝑖 = 1, · · ·𝑚,

ℎ𝑖 (𝑥1, · · · , 𝑥𝑛) = 0 𝑖 = 1, · · · 𝑙,

𝑥 = (𝑥1, . . . 𝑥𝑛) ∈ 𝑋

其中 𝑓 (𝑥1, · · · 𝑥𝑛)为目标函数，𝑔𝑖 (𝑥1, · · · , 𝑥𝑛) ≤ 0为不等式约束，ℎ𝑖 (𝑥1, · · · , 𝑥𝑛) = 0为不等
式约束，𝑋 为给定的集合，如 𝑅𝑛+与 𝑍𝑛。

0.2.1 最优化问题的可行集

定义 1. 集合：

𝑆 = {𝑥 ∈ 𝑋 |𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, · · ·𝑚, ℎ𝑖 (𝑥) = 0, 𝑖 = 1, · · · 𝑙}

为最优化问题的可行集或可行域。所以如果 𝑥 ∈ 𝑆，那么 𝑥是一个可行的策略。

0.3 最优化问题的分类

0.3.1 无约束/约束优化

求解无约束优化问题，可以使用最速下降法、牛顿法求解约束优化问题，可以将约束

优化转化为无约束优化如：（罚函数思想）将

min 𝑓 (𝑥)

𝑠.𝑡.𝑔(𝑥) = 0
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转化为：

min
{
𝑓 (𝑥) + 𝑀𝑔2(𝑥)

}
当 𝑀 为很大的正实数时，上述转换成立。

0.3.2 线性/非线性优化

线性规划常见于运筹学领域，其常见形式如下：

min𝐶𝑇𝑥

𝑠.𝑡.𝐴𝑥 = 𝑏

𝑥 ≥ 0

随后用单纯形法求解。

理解非线性优化：考虑均值方差模型（Mean-Varience）。
此时风险资产为 𝑥𝑖，收益为 𝑅𝑖，设 𝑥 = (𝑥1, ·, 𝑥𝑛)𝑇

𝑅(𝑥) = 𝑅1𝑥1 + 𝑅2𝑥2 + · · · + 𝑅𝑛𝑥𝑛

𝐸 (𝑅𝑖) = 𝑟𝑖

𝐸 (𝑅(𝑥)) = 𝑟1𝑥1 + · · · + 𝑟𝑛𝑥𝑛

Var(𝑅(𝑥)) =
′∑
𝑖=1

𝑛∑
𝑗=1

cov
(
𝑅𝑖, 𝑅 𝑗

)
𝑥𝑖𝑥 𝑗 =

′∑
𝑖=1

𝑛∑
𝑗=1

𝜎𝑖 𝑗𝑥𝑖𝑥 𝑗

为了最小化投资组合的方差，有下式，这就是一个非线性优化问题：

min
′∑
𝑖=1

𝑛∑
𝑗=1

𝜎𝑖 𝑗𝑥𝑖𝑥 𝑗

𝑠.𝑡.𝑟1𝑥1 + · · · + 𝑟𝑛𝑥𝑛 ⩾ 𝑟0

𝑥1 + · · · + 𝑥𝑛 = 1

𝑥𝑖 ≥ 0

0.3.3 连续/离散优化

离散优化，如生产车辆、路径选择等。若结合上述的 𝑀 −𝑉 模型，则可以增加条件。
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若要求 𝑥𝑖 中等于 0的分量不超过 30个，则，

min
′∑
𝑖=1

𝑛∑
𝑗=1

𝜎𝑖 𝑗𝑥𝑖𝑥 𝑗

{𝑦𝑖 ≤ 𝑏0 𝑠.𝑡.𝑟1𝑥1 + · · · + 𝑟𝑛𝑥𝑛 ⩾ 𝑟0

𝑥1 + · · · + 𝑥𝑛 = 1

𝑥𝑖 ≥ 0

0 ≤ 𝑥𝑖 ≤ 𝑦𝑖∑
𝑦𝑖 ≤ 30

𝑦𝑖 ∈ {0, 1}

连续优化，可以用 𝑀 −𝑉 模型来进一步理解

0.3.4 单目标/多目标优化

同样使用 𝑀 −𝑉 模型辅助理解。
单目标优化可为：

max 𝑟1𝑥1 + · · · + 𝑟𝑛𝑥𝑛

𝑠.𝑡.

′∑
𝑖=1

𝑛∑
𝑗=1

𝜎𝑖 𝑗𝑥𝑖𝑥 𝑗 ≤ 𝜏0

或者：

min
𝜏

′∑
𝑖=1

𝑛∑
𝑗=1

𝜎𝑖 𝑗𝑥𝑖𝑥 𝑗 ≤ (𝑟1𝑥1 + · · · + 𝑟𝑛𝑥𝑛)


多目标优化则为：
max 𝑟1𝑥1 + · · · + 𝑟𝑛𝑥𝑛

min
′∑
𝑖=1

𝑛∑
𝑗=1

𝜎𝑖 𝑗𝑥𝑖𝑥 𝑗

0.3.5 动态规划/确定性优化/随机规划/鲁棒优化

此类最优化的问题共性在于目标函数或约束条件中具有（不确定的）参数。
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1 凸集

1.1 基本概念

定义 2. 凸集：对 ∀𝑥, 𝑦 ∈ 𝐶,∀𝜆 ∈ [0, 1]，有 𝜆𝑥 + (1 − 𝜆𝑥)𝑦 ∈ 𝐶，即集合中两点的连线依
旧属于该集合。

相应地，可以衍生出凸组合和凸包的定义。

定义 3. 凸组合：若对 ∀𝑥1, . . . , 𝑥𝑘 ∈ 𝐶,∀𝜆𝑖 ≥ 0,
∑𝑘

𝑖=1 𝜆𝑖 = 1有 𝜆1𝑥1 + · · · + 𝜆𝑘𝑥𝑘 ∈ 𝐶，则
称 𝜆1𝑥1 + · · · + 𝜆𝑘𝑥𝑘 为凸组合。

凸包由凸集 𝐶 所包含的点的凸组合组成。

一般而言，有如下常见凸集：

• 超平面（hyperplane）
𝐻 =

{
𝑥 |𝑎𝑇𝑥 = 𝑏

}
, 𝑎 ≠ 0

• 半空间（halfspace)
𝐻+ =

{
𝑥 |𝑎𝑇𝑥 ≥ 𝑏

}
, 𝑎 ≠ 0

𝐻− =
{
𝑥 |𝑎𝑇𝑥 ≤ 𝑏

}
𝑎 ≠ 0

• 多面体（polyhedra）
𝐻 =

{
𝑥 |𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖

}
, 𝑎 ≠ 0, 𝑖 = 1, . . . , 𝑛

• 球
设球心为 𝑥𝑐，半径为 𝑟。

𝐵(𝑥𝑐, 𝑟) = {𝑥 |∥𝑥 − 𝑥𝑐∥2 ≤ 𝑟} = {𝑥𝑐 + 𝑟𝑢 |∥𝑢∥2 ≤ 1}

• 椭球 {
𝑥 | (𝑥 − 𝑥𝑐)𝑇𝑃−1(𝑥 − 𝑥𝑐) ≤ 1

}
其中 𝑃为正定矩阵，椭球的轴长为 (𝜆𝑖)

1
2，𝜆为 𝑃的特征值。

锥不一定为凸集。锥的定义为：若 𝑥 ∈ 𝐾 与 𝜆 > 0时有 𝜆𝑥 ∈ 𝐾，则称为锥。

• 凸锥 R𝑛+ = {𝑥 : 𝑥1 ≥ 0, . . . , 𝑥𝑛 ≥ 0}为凸锥。
• 半正定锥 𝑆𝑛+ =

{
𝐴 ∈ R𝑛 |𝐴𝑇 = 𝐴, 𝑥𝑇 𝐴𝑥 ≥ 0,∀𝑥 ≥ R𝑛

}
为半正定锥（凸锥）。
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1.2 基本性质

若 𝐷1和 𝐷2为凸集，则：

(1) 二者之交为凸集。𝐷1
⋂
𝐷2 = {𝑥 |𝑥 ∈ 𝐷1, 𝑥 ∈ 𝐷2}为凸集。

(2) 二者之和为凸集。𝐷1 + 𝐷2 = {𝑥 + 𝑦 |𝑥 ∈ 𝐷1, 𝑦 ∈ 𝐷2}为凸集。
(3) 二者之差为凸集。𝐷1 − 𝐷2 = {𝑥 − 𝑦 |𝑥 ∈ 𝐷1, 𝑦 ∈ 𝐷2}为凸集。
(4) 对任意非零实数 𝛼，𝛼𝐷1 = {𝛼𝑥, 𝑥 ∈ 𝐷1}为凸集。

证明. (3)设 (𝑥1−𝑦1) ∈ 𝐷1，(𝑥2−𝑦2) ∈ 𝐷2，则对∀𝜆 ∈ [0, 1]，有𝜆(𝑥1−𝑦1)+(1−𝜆)(𝑥2−𝑦2) =
[𝜆𝑥1 + (1 − 𝜆)𝑥2] − [𝜆𝑦1 + (1 − 𝜆)𝑦2] 证毕。

保持凸性的变换：仿射变换

设 𝑓 (𝑥) : R𝑛 → R𝑚 为仿射函数， 𝑓 (𝑥) = 𝐴𝑥 + 𝑏，𝐶 为凸集，则 𝑓 (𝑐) = { 𝑓 (𝑥) |𝑥 ∈ 𝐶}为凸集，
𝑓 −1(𝑐) = {𝑥 | 𝑓 (𝑥) ∈ 𝐶}为凸集。

证明. ∀𝑦1 ∈ 𝑓 (𝑐),∀𝑦2 ∈ 𝑓 (𝑐)，有 𝑦1 = 𝐴𝑥1 + 𝑏，𝑦2 = 𝐴𝑥2 + 𝑏，𝑥1 ∈ 𝐶，𝑥1 ∈ 𝐶。则
𝜆𝑦1 + (1 − 𝜆)𝑦2 = 𝜆(𝐴𝑥1 + 𝑏) + (1 − 𝜆) (𝐴𝑥2 + 𝑏) = 𝐴 [𝜆(𝑥1) + (1 − 𝜆)(𝑥2)] + 𝑏 ∈ 𝑓 (𝑐)

特殊的仿射变换有：

• 放缩 (scaling) 𝛼𝐶 = {𝛼𝑥 |𝑥 ∈ 𝐶}
• 平移 (translation) 𝑥0 + 𝐶 = {𝑥0 + 𝑥 |𝑥 ∈ 𝐶}
• 投影 (projection)

{
𝑥
′ |
(𝑥1
𝑥2

)
∈ 𝐶

}
1.3 相关引理与定理

1.3.1 投影定理

定理 1. 设 𝐶 ⊂ R𝑛 是非空闭凸集,则
(1) 存在唯一的点 𝑥 ∈ 𝐶 使得 𝑥是 𝑦到 𝐶 距离最小的点，即 ∥𝑥 − 𝑦∥ = inf

𝑥∈𝐶
∥𝑥 − 𝑦∥

(2) 𝑥是 𝑦到 𝐶 的最小距离点（投影点）的充要条件：(𝑥 − 𝑥)𝑇 (𝑥 − 𝑦) ≥ 0,∀𝑥 ∈ 𝐶

1.3.2 点与凸集的分离定理

定理 2. 设 𝐷 为非空闭凸集，𝑦 ∈ R𝑛，𝑦 ∉ 𝐷，则必存在非零向量 𝑎 ∈ R𝑛 以及实数 𝛽，

使得

𝑎𝑇𝑥 ≤ 𝛽 < 𝑎𝑇 𝑦,∀𝑥 ∈ 𝐷

，即存在超平面 𝐻 =
{
𝑥 |𝑎𝑇𝑥 = 𝛽

}
严格分离 𝑦与 𝐷。
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证明. ∵ 𝐷 ∈ R𝑛 为非空闭凸集，𝑦 ∈ R𝑛，𝑦 ∉ 𝐷，由投影定理知，在 𝐷 中存在唯一点

𝑥 ∈ 𝐷，使得 𝑦到 𝐷 之距离最短。此时有 ∀𝑥 ∈ 𝐷, (𝑥 − 𝑥)𝑇 (𝑦 − 𝑥) ≤ 0，则

∀𝑥 ∈ 𝐷, ∥𝑦 − 𝑥∥2 = (𝑦 − 𝑥)𝑇 (𝑦 − 𝑥) = 𝑦𝑇 (𝑦 − 𝑥) − 𝑥𝑇 (𝑦 − 𝑥) ≤ 𝑦𝑇 (𝑦 − 𝑥) − 𝑥𝑇 (𝑦 − 𝑥)

，令 𝑎 = 𝑦 − 𝑥,则有 𝑎 ≠ 0且 ∀𝑥 ∈ 𝐷, ∥𝑎∥2 ≤ 𝑎𝑇 𝑦 − 𝑎𝑇𝑥，也即 ∀𝑥 ∈ 𝐷, 𝑎𝑇𝑥 < 𝑎𝑇 𝑦 成立。令
𝛽 = sup

{
𝑎𝑇𝑥 |𝑥 ∈ 𝐷

}∗，则有 𝑎𝑇𝑥 ≤ 𝛽 < 𝑎𝑇 𝑦.

1.3.3 支撑超平面定理

定理 3. 设 𝐷 ∈ R𝑛 为非空闭凸集，𝑥 ∈ 𝑎𝐷，𝑎𝐷 为 𝐷 的边界点的集合，则存在非零向

量 𝑎 ∈ R𝑛，使得对 ∀𝑥 ∈ 𝑎𝐷, 𝑎𝑇𝑥 ≤ 𝑎𝑇𝑥。也称超平面 𝐻 =
{
𝑥 ∈ R𝑛 |𝑎𝑇𝑥 = 𝑎𝑇𝑥

}
是集合 𝐷 在 𝑥

的支撑超平面。

1.3.4 Farkas引理

引理 1.1. 设 𝐴 ∈ R𝑚×𝑛(矩阵)，𝑏 ∈ R𝑛（n维向量），则下述两组不等式系统有且仅有一
组有解。

(*) 𝐴𝑥 ≤ 0，𝑏𝑇𝑥 > 0

(**) 𝐴𝑇 𝑦 = 𝑏，𝑦 ≥ 0其中 𝑥 ∈ R𝑛，𝑦 ∈ R𝑚

证明. 设式 (**)有解，即存在 𝑦 ≥ 0使得 𝐴𝑇 𝑦 = 𝑏。若式 (*)也成立，有 𝑥使得 𝐴𝑥 ≤ 0，
则由 𝑦 ≥ 0可得 𝑏𝑇𝑥 = (𝐴𝑇 𝑦)𝑇𝑥 = 𝑦𝑇 𝐴𝑥 ≤ 0，也即式 (*)不成立。

设式 (**)无解，记 𝐷 =
{
𝑧 |𝑧 = 𝐴𝑇 𝑦, 𝑦 ≤ 0

}
，则显然 𝐷 ∈ R𝑛 为非空闭凸集，且 𝑧 ≠ 𝑏。

根据点与凸集的分离定理可知，存在非零向量 𝑎 ∈ R𝑛与实数 𝛽使得 ∀𝑧 ∈ 𝐷, 𝑎𝑇 𝑧 ≤ 𝛽 < 𝑎𝑇𝑏。

∵ 0 ∈ 𝐷，∴ 0 ≤ 𝛽 < 𝑎𝑇𝑏，𝑎𝑇𝑏 > 0。
由于要使 ∀𝑦 ≥ 0, 𝑎𝑇𝑏 > 𝛽 ≥ 𝑎𝑇 𝑧 = 𝑎𝑇 𝐴𝑇 𝑦 = 𝑦𝑇 𝐴𝑎，由 𝑦 的任意性可知，𝐴𝑎 ≤ 0。由

𝑎𝑇𝑏 > 0和 𝐴𝑎 ≤ 0可知式 (*)成立。

Farkas引理的变形：

引理 1.2. 设 𝑝、𝑞为两个非空整数，𝑐，𝑎𝑖，𝑏 𝑗 为 R𝑛 中向量，下述线性不等式系统

𝑎𝑇𝑖 𝑑 = 0 𝑖 = 1, . . . , 𝑝

𝑏𝑇𝑗 𝑑 = 0 𝑗 = 1, . . . , 𝑞

𝑐𝑇𝑑 < 0
∗因为 𝑎𝑇 𝑥有上界，则其必有上确界 𝛽。
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无解，当且仅当存在非负实数 𝜆𝑖, 𝑖 = 1, . . . , 𝑝 和实数 𝜇 𝑗 , 𝑗 = 1, . . . , 𝑞 使得 𝑐 +
∑𝑝

𝑖=1 𝜆𝑖𝑎𝑖 +∑𝑞
𝑗=1 𝜇 𝑗𝑏 𝑗 = 0

利用 Farkas引理的变形可以得到优化问题的最优性条件。对于问题

min 𝑓 (𝑥)

𝑠.𝑡.𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑝

ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑞

，在 𝑥∗处求梯度，则下降方向为 𝑓 (𝑥∗)𝑇𝑑 < 0。可行方向要满足∇𝑔𝑖 (𝑥∗)𝑇𝑑 ≤ 0，∇ℎ 𝑗 (𝑥∗)𝑇𝑑 = 0。
当无可行方向时，无解，此时达到（局部）最优解。无解的条件也即：

∇ 𝑓 (𝑥∗) +
𝑝∑
𝑖=1

𝜆𝑖∇𝑔𝑖 (𝑥∗) +
𝑞∑
𝑗=1

𝜇 𝑗∇ℎ 𝑗 (𝑥∗) = 0

𝜆𝑖 ≥ 0

上述式为该优化问题的最优性条件。

Farkas引理的几何解释：

𝐴 的行向量与向量 𝑏 之间的位置关系。对矩阵 𝐴𝑚×𝑛 做行分块，则有 𝐴𝑚×𝑛 =⇒

©­­­­­­«
𝑎𝑇1

𝑎𝑇2

. . .

𝑎𝑇𝑚

ª®®®®®®¬
，

𝑎𝑖 是 n维列向量，𝑎𝑖 ∈ R𝑛,𝑏 ∈ R𝑛。则可将式 (*)与式 (**)转化为
𝑎𝑇𝑖 𝑥 ≤ 0, 𝑖 = 1, . . . , 𝑚, 𝑏𝑇𝑥 > 0

𝐴𝑇 𝑦 =
(
𝑎𝑇1 , 𝑎

𝑇
2 , . . . , 𝑎

𝑇
𝑚

)𝑇
(𝑦1, 𝑦2, . . . , 𝑦𝑚) = 𝑦1𝑎1 + 𝑦2𝑎2 + · · · + 𝑦𝑚𝑎𝑚 = 𝑏, 𝑦𝑖 ≥ 0

利用线性规划对偶理论证明 1Farkas引理:

(1)𝑥 : 𝐴𝑥 ≤ 0, 𝑏𝑇𝑥 > 0

(2)𝑦 : 𝐴𝑇 𝑦 = 𝑏, 𝑦 ≥ 0

有且仅有一个解。

则 (LP)问题为：
min 𝑐𝑇 𝑦

𝑠.𝑡.𝐴𝑇 𝑦 = 𝑏

𝑦 ≥ 0
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其对偶 (D)问题为：
max 𝑏𝑇𝑥

𝑠.𝑡.𝐴𝑥 = 𝑐

则若 LP问题不可行，D可能不可行，也可能无界。令 𝑐 = 0，则 (LP)问题为：

min 0𝑇 𝑦

𝑠.𝑡.𝐴𝑇 𝑦 = 𝑏

𝑦 ≥ 0

其对偶 (D)问题为：
max 𝑏𝑇𝑥

𝑠.𝑡.𝐴𝑥 =≤ 0

若 (2)有解，则 (LP)有可行解，有最优值 0，则 (D)也有最优值 0。(1)没有大于 0的，
无解。若 (2)无解，则 (LP)无可行解，则 (D)有解 𝑥 = 0，但解集无界，即 ∃𝑥使得 𝐴𝑥 ≤ 0，
𝑏𝑇𝑥 > 0，(1)有解。
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2 凸函数与凸优化问题

2.1 凸函数的定义

定义 4. 设函数 𝑓 (𝑥)在凸集 𝐷上有定义，若对任意的 𝑥, 𝑦 ∈ 𝐷和任意的 𝜆 ∈ [0, 1]，有：
𝑓 [𝜆𝑥 + (1 − 𝜆)𝑦 ≤ 𝜆 𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦)]，则称 𝑓 (𝑥)为凸函数。若对 𝑥 ≠ 𝑦和 𝜆 ∈ (0, 1)有不
等式严格成立，则称 𝑓 (𝑥) 为严格凸函数

f(x)

f(y)

例 2.1. 证明 𝑓 (𝑥) = 𝑐𝑇𝑥 = 𝑐1𝑥1 + 𝑐2𝑥2 + · · · + 𝑐𝑛𝑥𝑛 为凸函数。

证明. 任取 𝑥, 𝑦 ∈ R𝑛, 𝑥 ∈ [0, 1]，有 𝑓 [𝜆𝑥 + (1 − 𝜆𝑥)𝑦] = 𝑐𝑇 [𝜆𝑥 + (1 − 𝜆)𝑦] = 𝜆𝑐𝑇𝑥 + (1 −
𝜆)𝑐𝑇 𝑦 = 𝜆 𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦)，证毕。

注 2.1. 线性函数是既凸又凹的函数

2.2 凸函数的基本性质

设 𝑓 (𝑥) 为凸函数，则
(1) 𝑓 (𝑥)必为连续函数。
(2) 对于实数 𝛼 > 0，𝛼 𝑓 (𝑥) 也是凸函数。
(3) 设 𝑓𝑖 (𝑥), 𝑖 = 1, . . . , 𝑚为凸函数，则 𝑓 (𝑥) = max1≤𝑖≤𝑚 𝑓𝑖 (𝑥)也为凸函数。

(4) 设 𝑓𝑖 (𝑥), 𝑖 = 1, . . . , 𝑚为凸函数，则 𝑓 (𝑥) =
∑𝑚

𝑖=1 𝑓𝑖 (𝑥) 也为凸函数。
(5) 若 𝑔(𝑥)为单调函数，则 𝑔( 𝑓 (𝑥)) 也为凸函数。
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定理 4. 函数 𝑓 (𝑥) 为 R𝑛 上的凸函数的充要条件为：对任意的 𝑥, 𝑦 ∈ R𝑛，单变量函数
𝜙(𝛼) = 𝑓 (𝑥 + 𝛼𝑦)是关于 𝛼的凸函数。

2.3 可微凸函数的基本性质

定理 5. 设 𝑓 (𝑥) 为定义在非空开凸集 𝐷 上的可微函数，则：

(1) 𝑓 (𝑥)是 𝐷 上的凸函数的充要条件为： 𝑓 (𝑦) ≥ 𝑓 (𝑥) + ∇ 𝑓 (𝑥)𝑇 (𝑦 − 𝑥),∀𝑥, 𝑦 ∈ 𝐷
(2) 𝑓 (𝑥)是 𝐷上的严格凸函数的充要条件为：𝑓 (𝑦) > 𝑓 (𝑥) +∇ 𝑓 (𝑥)𝑇 (𝑦−𝑥),∀𝑥, 𝑦 ∈ 𝐷, 𝑥 ≠ 𝑦

证明. 先证必要性（凸函数则切线在函数图像下方）。𝑓 (𝑥)为凸函数，则对∀𝑥, 𝑦 ∈ 𝐷, 𝜆 ∈
(0, 1) 有：

𝑓 [𝜆𝑦 + (1 − 𝜆)𝑥] ≤ 𝜆 𝑓 (𝑦) + (1 − 𝜆) 𝑓 (𝑥) = 𝜆 𝑓 (𝑦) + 𝑓 (𝑥) − 𝜆 𝑓 (𝑥)

𝑓 [𝜆𝑦 + (1 − 𝜆)𝑥] − 𝑓 (𝑥) ≤ 𝜆 [ 𝑓 (𝑦) − 𝑓 (𝑥)]
𝑓 [𝑥 + 𝜆(𝑦 − 𝑥)] − 𝑓 (𝑥)

𝜆
≤ 𝑓 (𝑦) − 𝑓 (𝑥)

对 𝑓 (𝑥)做泰勒展开，则

𝑓 (𝑥) + 𝜆∇ 𝑓 (𝑥)𝑇 (𝑦 − 𝑥) + 𝑜(𝑥) − 𝑓 (𝑥)
𝜆

= ∇ 𝑓 (𝑥)𝑇 (𝑦 − 𝑥) ≤ 𝑓 (𝑦) − 𝑓 (𝑥)

则

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ∇ 𝑓 (𝑥)𝑇 (𝑦 − 𝑥)

再证充分性。假设对∀𝑥, 𝑦 ∈ 𝐷，有：𝑓 (𝑦) ≥ 𝑓 (𝑥) +∇ 𝑓 (𝑥)𝑇 (𝑦−𝑥)。令 𝑧 = 𝜆𝑥+ (1−𝜆)𝑦, 𝜆 ∈
(0, 1)。则易得 𝑧 ∈ 𝐷。由假设，有

(1) 𝑓 (𝑦) ≥ 𝑓 (𝑧) + ∇ 𝑓 (𝑧)𝑇 (𝑦 − 𝑧)

(2) 𝑓 (𝑥) ≥ 𝑓 (𝑧) + ∇ 𝑓 (𝑧)𝑇 (𝑧 − 𝑥)

则 𝜆(1) + (1 − 𝜆) (2)有：

𝜆 𝑓 (𝑦) + (1 − 𝜆) 𝑓 (𝑥) ≥ 𝑓 (𝑧) + ∇ 𝑓 (𝑧)𝑇 [𝜆𝑦 + (1 − 𝜆)𝑥 − 𝑧] = 𝑓 [𝜆𝑦 + (1 − 𝜆)𝑥]

故 𝑓 (𝑥)为凸函数。

定理 6. 设 𝑓 (𝑥) 为定义在非空开凸集 𝐷 上的二阶可微函数，则：

(1) 𝑓 (𝑥)是 𝐷上的凸函数的充要条件为： 𝑓 (𝑥)的 Hesse矩阵在 𝐷上半正定。即对每一个

𝑥 ∈ 𝐷，有 ∀𝑦 ≥ R𝑛, 𝑦𝑇∇2 𝑓 (𝑥) ≥ 0。
(2) 若 𝑓 (𝑥) 的 Hesse矩阵在 𝐷 上正定，则 𝑓 (𝑥) 为严格凸函数。反之，若 𝑓 (𝑥) 为严格凸
函数，则 𝑓 (𝑥) 的 Hesse矩阵在 𝐷 上半正定。
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证明. 先证必要性（若为凸函数，则 Hesse矩阵半正定，∀𝑦 ∈ R𝑛, 𝑦𝑇∇2 𝑓 (𝑥)𝑦 ≥ 0）。

设 𝑓 (𝑥) 为定义在非空开凸集 𝐷 上的二阶可微函数。任取 𝑥 ∈ 𝐷，由于 𝐷 是开凸集，

对 ∀𝑦 ∈ R𝑛，存在充分小的 𝛼 > 0，使得 𝑥 + 𝛼𝑦 ∈ 𝐷。由定理5，有：∀𝑦 ∈ R𝑛, 𝑓 (𝑥 + 𝛼𝑦) ≥
𝑓 (𝑥) + 𝛼∇ 𝑓 (𝑥)𝑇 𝑦。有由于 𝑓 (𝑥)为二阶可微函数，则展开有：𝑓 (𝑥 + 𝛼𝑦) = 𝑓 (𝑥) + 𝛼∇ 𝑓 (𝑥)𝑇 𝑦 +
1
2𝛼

2𝑦𝑇∇2 𝑓 (𝑥𝑦 + 𝑜(∥𝛼𝑦∥2)) 故 1
2𝛼

2𝑦𝑇∇2 𝑓 (𝑥)𝑦 + 𝑜(∥𝛼𝑦∥2) ≥ 0。同除 𝛼2 并令 𝛼 → 0+，则有
1
2 𝑦
𝑇∇2 𝑓 (𝑥)𝑦 + 0 ≥ 0，故 ∀𝑦 ∈ R𝑛, 𝑦𝑇∇2 𝑓 (𝑥)𝑦 ≥ 0得证。
再证充分性（若 Hesse矩阵半正定，则为凸函数）。
设 ∇2 𝑓 (𝑥) 在 𝐷 上半正定，任取 𝑥, 𝑥 ∈ 𝐷，将 𝑓 (𝑥) 在 𝑥处展开可得：

𝑓 (𝑥) = 𝑓 (𝑥) + ∇ 𝑓 (𝑥)𝑇 (𝑥 − 𝑥) + 1
2
(𝑥 − 𝑥)𝑇∇2 𝑓 (𝜉)(𝑥 − 𝑥)

其中 𝜉 = 𝜃𝑥 + (1− 𝜃)𝑥, 0 < 𝜃 < 1。因为 𝑥, 𝑥 ∈ 𝐷，则 𝜉 ∈ 𝐷。因为 ∇2 𝑓 (𝑥)在 𝐷上半正定，则

∇2 𝑓 (𝜉) ≥ 0，所以 𝑓 (𝑥) ≥ 𝑓 (𝑥) + ∇ 𝑓 (𝑥)𝑇 (𝑥 − 𝑥)。由定理5， 𝑓 (𝑥) 为定义在非空开凸集 𝐷 上

的二阶可微函数。

2.4 凸函数与水平集

定理 7. 设 𝐷 是非空凸集， 𝑓 (𝑥) 是 𝐷 上的凸函数，𝛼 是唯一给定的实数，则水平集

L𝛼 = {𝑥 ∈ 𝐷 | 𝑓 (𝑥) ≤ 𝛼}是凸集（假设非空）。

𝛼

证明. 设 𝑥, 𝑦 ∈ L，则有 𝑥, 𝑦 ∈ 𝐷，𝑓 (𝑥) ≤ 𝛼，𝑓 (𝑦) ≤ 𝛼，𝑧 = 𝜆𝑥 + (1−𝜆)𝑦, 𝜆 ∈ [0, 1]，则
𝑧 ∈ 𝐷。由此有 𝑓 (𝑧) = 𝑓 [𝜆𝑥 + (1 − 𝜆)𝑦] ≤ 𝜆 𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦) ≤ 𝜆𝛼 + (1 − 𝜆)𝛼 = 𝛼。所以水

平集 L𝛼 = {𝑧 ∈ 𝐷 | 𝑓 (𝑧) ≤ 𝛼}是凸集。

2.5 凸规划

凸规划指凸函数在凸集上求极小，或凹函数求极大。（对应：凹规划——凹函数求极小，

难处理）
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定理 8. (数学规划问题)最优化问题

min 𝑓 (𝑥)

𝑠.𝑡 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑝

ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑞

若 𝑓 (𝑥)，𝑔𝑖 (𝑥)为凸函数，ℎ 𝑗 (𝑥) = 𝑎 𝑗𝑥 + 𝑏 𝑗，则 (𝑃) 为凸规划问题。

证明. 由 𝑔𝑖 (𝑥)和 ℎ 𝑗 (𝑥)定义的可行域 𝑆 =
{
𝑥 ∈ |𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑝, ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑞

}
是凸集。

定义 5.

局部最优解 𝑥： 𝑓 (𝑥) ≤ 𝑓 (𝑥),∀𝑥 ∈ 𝑆⋂
𝑁𝜖 (𝑥)

全局最优解 𝑥∗： 𝑓 (𝑥∗) ≤ 𝑓 (𝑥),∀𝑥 ∈ 𝑆

定理 9. 设 𝑥∗是凸规划的一个局部最优解，则

(1) 𝑥∗也是全局最优解。
(2) 若目标函数是严格凸的，则 𝑥∗是唯一的全局最优解。

证明. (1) (反证法)
设 𝑥∗ 是凸规划的局部最优解，但不是全局最优解。则一定存在一个可行点 𝑦 使得

𝑓 (𝑦) < 𝑓 (𝑥∗)。由可行集的凸性可知，对于 ∀𝜆 ∈ (0, 1), 𝜆𝑥∗ + (1− 𝜆) 𝑓 (𝑦)为凸集，也是
可行集。

由目标函数的凸性可知，有 𝑓 [𝜆𝑥∗ + (1 − 𝜆)𝑦∗] ≤ 𝜆 𝑓 (𝑥∗) + (1 − 𝜆) 𝑓 (𝑦) < 𝜆 𝑓 (𝑥∗) +
(1 − 𝜆) 𝑓 (𝑥∗) = 𝑓 (𝑥∗)。取 𝜆 → 1−，则 𝜆𝑥∗ + (1 − 𝜆)𝑦 靠近 𝑥∗。在 𝑥∗ 的邻域中，有

𝑓 [𝜆𝑥∗ + (1 − 𝜆)𝑦∗] < 𝑓 (𝑥∗)。则 𝑥∗不是局部最优，与假设矛盾。则 𝑥∗是全局最优解。

(2) (反证法)
设目标函数 𝑓 (𝑥)是严格凸的，设 𝑥∗ ≠ 𝑦∗均为全局最优解， 𝑓 (𝑥∗) = 𝑓 (𝑦∗)。由于 𝑓 (𝑥)
是严格凸的，则对 𝜆 ∈ (0, 1)，有 𝑓 [𝜆𝑥∗ + (1 − 𝜆)𝑦∗] < 𝜆 𝑓 (𝑥∗) + (1 − 𝜆) 𝑓 (𝑦∗)，此时 𝑥∗

不是全局最优解。与假设矛盾，假设不成立。证毕。
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3 无约束问题的最优性条件和算法

3.1 最优性条件

对一个优化问题 (𝑃) min𝑥∈ 𝑓 (𝑥) 有如下概念。

3.1.1 下降方向

定义 6. 设 𝑓 (𝑥) : R𝑛 → R 是一连续函数，给定点 𝑥 ∈ R𝑛，若对方向 𝑑 ∈ R𝑛 存在数
𝛿 > 0，使得：

∀𝑑 ∈ (0, 𝛿), 𝑓 (𝑥 + 𝛼𝑑) < 𝑓 (𝑥)

，则称 𝑑 为 𝑓 (𝑥) 在 𝑥处的下降方向。

定理 10. 设函数 𝑓 (𝑥)在 𝑥处连续可微，若存在非零向量 𝒅 ∈ R𝑛，使得

∇ 𝑓 (𝑥)𝑇 𝒅 < 0

成立，则 𝒅为 𝑓 (𝑥)在 𝑥处的一个下降方向。

证明. 对一个充分小的 𝑎 > 0，将在 𝑥处用泰勒公式展开，则有

𝑓 (𝑥 + 𝑎𝒅) = 𝑓 (𝑥) + 𝑎∇ 𝑓 (𝑥)𝑇 𝒅 + 𝑜 (𝑎∥𝒅∥)

由于 𝑎 > 0，∇ 𝑓 (𝑥)𝑇 𝒅 < 0，故存在 𝛿 > 0，使得对 𝑎 ∈ (0, 𝛿)有：

𝑎∇ 𝑓 (𝑥)𝑇 𝒅 + 𝑜 (𝑎∥𝒅∥) < 0

当 𝑎充分小时，本式的符号由 𝑎∇𝑇 𝑓 (𝑥)𝑑 决定。
因此，有 𝑓 (𝑥 + 𝑎𝒅) < 𝑓 (𝑥)对 ∀𝑎 ∈ (0, 𝛿)均成立，即 𝒅为 𝑓 (𝑥)在 𝑥处的一个下降方向。

例 3.1.
𝑓 (𝑥) = 𝑥2

1 + 𝑥2
2, 𝑥 = (1, 1)𝑇

∇𝑇 𝑓 (𝑥) = (2𝑥1, 2𝑥2)𝑇 = (2, 2)𝑇
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(1,1)

(2,2)

等秩面

𝑥2

𝑥1

显然，并不是目

标函数最大的方向

−∇ 𝑓 (𝑥) 最速下降方向
（与等秩面垂直）

𝑐𝑜𝑠𝜃 𝑓 (𝑥) 也可 (夹角大于 90度)

𝜃

3.1.2 最优性条件

定理 11. (一阶条件)：设 𝑓 (𝑥) : R𝑛 −→ 𝑅为连续可微，若 𝑥∗为 (𝑃) 的局部极小点，则
必有 ∇ 𝑓 (𝑥∗) = 0。

证明. 反证法。设 𝑥∗ 为 𝑓 (𝑥) 的局部极小点，但 ∇ 𝑓 (𝑥∗) ≠ 0。取 𝑑 = −∇ 𝑓 (𝑥∗)𝑇，则有
∇ 𝑓 (𝑥∗)𝑇𝑑 < 0，−∇ 𝑓 (𝑥∗)𝑇 为 (𝑃) 的下降方向，则 𝑥∗不为局部极小点，矛盾。

定理 12. (二阶必要条件)设 𝑓 (𝑥) : R𝑛 −→ 𝑅 为连续可微，若 𝑥∗ 是 (𝑃) 的局部极小解，
则有：∇ 𝑓 (𝑥∗) = 0,∇2 𝑓 (𝑥∗) ≥ 0。

证明. 考虑序列 𝑥𝑘 = 𝑥∗ + 𝛼𝑘𝑑，𝑑 是任意的给定数，𝑎𝑘 趋向于 0。由 Taylor展开，当 𝑘

充分大时，

0 ≤ 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗) = 𝛼𝑘∇ 𝑓 (𝑥∗)𝑇𝑑 + 1
2𝛼

2𝑑2∇2 𝑓 (𝑥𝑘 )𝑑。令 𝑥𝑘 为 𝑥𝑘 与 𝑥∗ 的凸组合，𝑥𝑘 =

𝜃𝑥∗ + (1 − 𝜃)𝑥𝑘 , 𝜃 ∈ (0, 1)。因为 ∇ 𝑓 (𝑥∗)𝑇 = 0，所以 0 ≤ 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗) = 1
2𝛼

2𝑑𝑇∇2 𝑓 (𝑥𝑘 )𝑑，
0 ≤ 𝑓 (𝑥𝑘 )− 𝑓 (𝑥∗)

2𝛼2 = 𝑑𝑇∇2 𝑓 (𝑥𝑘 )𝑑。取极限 𝛼𝑘 → 0，则 𝑥𝑘 → 𝑥∗，𝑥𝑘 → 𝑥∗。所以 𝑑𝑇∇2 𝑓 (𝑥∗)𝑑 > 0
对 ∀𝑑 ∈ R𝑛 成立，即 ∇2 𝑓 (𝑥∗) ≥ 0，Hesse矩阵半正定。

定理 13. (二阶充分条件) 设 𝑓 (𝑥) : R𝑛 −→ 𝑅 为连续可微，若在点 𝑥∗ 处 ∇ 𝑓 (𝑥∗) =

0, ,∇2 𝑓 (𝑥∗) > 0，则 𝑥∗必为 (𝑃)的局部极小解。

证明. 取充分小的 𝛼 > 0，由 Taylor展开，对任意的向量 𝑑，有

𝑓 (𝑥∗ + 𝛼𝑑) = 𝑓 (𝑥∗) + 𝛼∇ 𝑓 (𝑥∗)𝑇𝑑 + 1
2
𝑑𝑇∇2 𝑓 (𝑥∗ + 𝜃𝛼𝑑)𝑑, 𝜃 ∈ (0, 1) (∗)

由 𝑓 (𝑥) 的二阶连续可微可知，当 𝑑 充分小时，有 𝑑𝑇∇2 𝑓 (𝑥∗ + 𝜃𝛼𝑑)𝑑 > 0。由于 𝛼 充分小，

∇2 𝑓 (𝑥∗)正定，其领域的 ∇2 𝑓 (𝑥∗+𝜃𝛼𝑑)也是正定的。由 (∗)可知，存在 𝑥∗的某个邻域 𝑁𝜉 (𝑥∗)
时，总有 𝑓 (𝑥∗ + 𝛼𝑑) > 𝑓 (𝑥∗)。则 𝑥∗必为 (𝑃) 的局部极小解。
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定理 14. (凸全局最优性定理)设 𝑓 (𝑥) : R𝑛 −→ 𝑅为连续可微凸函数，则 𝑥∗为全局最优

解的充要条件为

∇ 𝑓 (𝑥∗) = 0

证明. 证充分性。因 𝑓 (𝑥)为可微凸函数及 ∇ 𝑓 (𝑥∗) = 0可知，𝑓 (𝑥) ≥ 𝑓 (𝑥∗) +∇ 𝑓 (𝑥∗)𝑇 (𝑥−
𝑥∗) = 𝑓 (𝑥∗),∀𝑥 ∈ 𝑅

必要性证明见11。证毕。

故，若能证明需要优化的问题是凸优化问题，难度就会减小很多。解决优化问题的步

骤一般为：(1)找下降方向 (2)确定步长。此外，对于凸函数而言，若其满足一阶条件，则
有全局最优解。

3.2 一维优化

3.2.1 基于搜索区间的直接搜索法

考虑优化问题 min[𝑎,𝑏] = 𝜑(𝑡)。假设 𝜑(𝑡) 在 [𝑎, 𝑏] 上为单谷函数。
设目标函数的定义域为 [𝑎0, 𝑏0]。选取 𝜆, 𝜇 ∈ [𝑎0, 𝑏0] 且 𝜆 < 𝜇。

若 𝜙(𝜆) < 𝜙(𝜇)，则 [𝑎1, 𝑏1] = [𝑎0, 𝜇]。
若 𝜙(𝜆) ≥ 𝜙(𝜇)，则 [𝑎1, 𝑏1] = [𝜆, 𝑏0]。
新的搜索区间为 [𝑎1, 𝑏1]。
均匀搜索法

令 𝛿 = 𝑏0−𝑎0
𝑁 ，𝑎𝑖 = 𝑎0 + 𝑖𝛿, 𝑖 = 1, . . . , 𝑁 − 1。若对某个 𝑖，有 𝜙(𝑎𝑖−1) > 𝜙(𝑎𝑖) < 𝜙(𝑎𝑖+1)，

则 𝑎∗ ∈ [𝑎𝑖−1, 𝑎𝑖+1]。则新搜索区间 [𝑎1, 𝑏1] = [𝑎𝑖−1, 𝑏𝑖+1]。区间缩小程度为 2
𝑁。

3.2.2 二分法（利用导数）

用二分法找 𝜙′(𝑡) 在 (𝑎, 𝑏) 上的零点。
𝜙′(𝑡) = 0,𝜙′(𝑎) < 0,𝜙′(𝑏) > 0二分法可以使得每次搜索区间减半（这个搜索速度快了，

是因为用了更多信息）

𝑏𝑛 − 𝑎𝑛 =
(
1
2

)
(𝑏𝑛 − 𝑎𝑛) < 𝜉

=⇒ 𝑛 ≥
log 𝜉

𝑏𝑛−𝑎𝑛
log 1

2
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𝑎 𝑏

0.618法 (直接法)(黄金区间法)
为什么是 0.618？
均匀搜索法一次更新两个点。如果我们减少计算量，一次更新一个点呢？

设 [𝑎𝑘 , 𝑏𝑘 ] 是经过第 𝑘 次搜索确定的区间。在期间试探两点 𝜆𝑘 和 𝜇𝑘，𝜇𝑘 > 𝜆𝑘 且满足

以下条件：

• 𝜆𝑘 和 𝜇𝑘 在 [𝑎𝑘 , 𝑏𝑘 ] 中位置对称
• 每次迭代区间缩小比率相同。
上述条件对应：

(∗)

𝑏𝑘 − 𝜆𝑘 = 𝜇𝑘 − 𝑎𝑘
𝑏𝑘+1 − 𝑎𝑘+1 = 𝜏(𝑎𝑘 − 𝑏𝑘 )

假设 𝜙(𝜇𝑘 ) > 𝜙(𝜆𝑘 )，由 (∗) 可得，

(∗∗)

𝑏𝑘 − 𝜆𝑘 = 𝜇𝑘 − 𝑎𝑘
𝜇𝑘 − 𝑎𝑘 = 𝜏(𝑎𝑘 − 𝑏𝑘 )

最终迭代的一般结果为： 
𝜆𝑘 = 𝑎𝑘 + (1 − 𝜏) (𝑏𝑘 − 𝑎𝑘 )

𝜇𝑘 = 𝑎𝑘 + 𝜏(𝑎𝑘 − 𝑏𝑘 )

令 𝜆𝑘 替代为 𝜇𝑘+1，每次只更新一个点，则有

𝜇𝑘+1 = 𝑎𝑘+1 + 𝜏(𝑏𝑘+1 − 𝑎𝑘+1) = 𝑎𝑘 + 𝜏(𝜇𝑘 − 𝑎𝑘 ) = 𝑎𝑘 + 𝜏 [𝜏(𝜇𝑘 − 𝑎𝑘 )] = 𝑎𝑘 + 𝜏2(𝜇𝑘 − 𝑎𝑘 )

𝜆𝑘 = 𝑎𝑘 + (1 − 𝜏) (𝑏𝑘 − 𝑎𝑘 )

所以

𝑎𝑘 + (1 − 𝜏)(𝑏𝑘 − 𝑎𝑘 ) = 𝑎𝑘 + 𝜏2(𝑏𝑘 − 𝑎𝑘 )

由于 𝜏 > 0，解得 𝜏 =
√

5−1
2 ≈ 0.618。
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𝜆𝑘𝑎𝑘 𝑏𝑘
𝜇𝑘

𝑎𝑘+1 𝜇𝑘+1

𝜆𝑘+1

𝑏𝑘+1

例 3.2. 令 𝜏 =
√

5−1
2 ≈ 0.618。

𝜆 = 𝑎𝑘 + (1 − 𝜏) (𝑏𝑘 − 𝑎𝑘 )
𝜇 = 𝑎𝑘 + 𝜏(𝑏𝑘 − 𝑎𝑘 )
若 𝜙(𝜆) < 𝜙(𝜇)，则 𝑎∗ ∈ [𝑎𝑘 , 𝜇]，产生新的搜索区间。此时 𝜇−𝑎𝑘

𝑏𝑘−𝑎𝑘 = 𝑏𝑘−𝜆
𝑏𝑘−𝑎𝑘 = 𝜆−𝑎𝑘

𝜇−𝑎𝑘 = 0.618。
若 𝜙(𝜆) > 𝜙(𝜇)，则 𝑎∗ ∈ [𝜆, 𝑏𝑘 ]，产生新的搜索区间。

基于导数信息的二分法

𝜆 = 𝑎0+𝑏0
2 ，计算 𝜙

′ (𝜆)。
若 𝜙

′ (𝜆) = 0，则 𝑎∗ = 𝜆。

若 𝜙
′ (𝜆) < 0，则 𝑎∗ ∈ [𝜆, 𝑏0]。

若 𝜙
′ (𝜆) > 0，则 𝑎∗ ∈ [𝑎0, 𝜆]。

3.3 多维优化

对于 min𝑥∈R𝑛 𝑓 (𝑥)，𝑑 = −𝐻−1∇ 𝑓 (𝑥0) 是下降方向，𝑑 < 0。
当 𝐻 为单位阵时↔最速下降法。
当 𝐻 为 Hesse矩阵时↔牛顿法。

定义 7. 设序列 𝑥𝑘 收敛到 𝑥∗，若存在极限

lim
𝑘→∞



𝑥𝑘+1 − 𝑥∗




𝑥𝑘 − 𝑥∗

 = 𝛽

当 0 < 𝛽 < 1 →算法线性收敛。
当 𝛽 = 0 →超线性收敛。
若存在某个 𝑝 ≥ 1，有：

lim
𝑘→∞



𝑥𝑘+1 − 𝑥∗




𝑥𝑘 − 𝑥∗

 = 𝛽 < +∞

称
{
𝑥𝑘

}
为 𝑝阶收敛。

当 𝑝 > 1，𝑝阶收敛必为超线性收敛 (𝛽 > 0)，反之则不一定。
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3.3.1 坐标轴交替下降法

给定初始点 𝑥0。依次沿着坐标轴 𝑒1, . . . , 𝑒𝑛 进行搜索。

优点：

• 不用成本即得搜索方向
• 变量之间交叉程度较小时很有效
缺点：

• 所得到的点未必收敛
框架

(1) 初始点 𝑥0，𝑘 := 0, 𝜖 > 0
(2) 是否满足？是，终止搜索。
(3) 否。记 𝑦0 = 𝑥𝑘。令 𝑦𝑖 = 𝑦𝑖−1 + 𝛼𝑖𝑒𝑖，其中 𝑎𝑖 := 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓 (𝑦𝑖−1 + 𝛼𝑒𝑖) 𝑖 = 1, . . . , 𝑚
(4) 令 𝑥𝑘+1 := 𝑦𝑛，𝑘 := 𝑘 + 1转步 1

3.3.2 梯度下降法 (最速下降法)

选择 𝑥𝑘 处负梯度为搜索方向

即 𝑑𝑘 = −∇ 𝑓 (𝑥𝑘 )
若 ∇ 𝑓 (𝑥𝑘 )𝑇𝑑 < 0，则 𝑑 为下降方向。

优点：

• 简单直观
• 容易收敛
• 方向只需要计算 ∇ 𝑓 (𝑥𝑘 )
缺点：

• 收敛速度慢（线性收敛）
原因：没用利用 ∇2 𝑓 (𝑥𝑘 ) 的信息

• zigzag现象（曲折前进）
若迭代中补偿是的精确最小点，则 𝜙

′ (𝛼𝑘 ) = 0，也即 𝜙
′ (𝛼𝑘 ) = ∇ 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 )𝑇𝑑𝑘 =

∇ 𝑓 (𝑥𝑘+1)𝑇
[
−∇ 𝑓 (𝑥𝑘 )

]
= −∇ 𝑓 (𝑥𝑘+1)𝑇∇ 𝑓 (𝑥𝑘 ) = 0。两方向垂直。

• 不具备二次终止性
算法

• Step1(初始化)
给出 (初始点)𝑥0 ∈ R𝑛, 0 ≤ 𝜀 << 1，𝐾 := 0。

• Step2(终止条件)计算 ∇ 𝑓 (𝑥𝑘 )。若（此时梯度接近 0）若不满足上述条件，则：
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• Step3(计算下降方向) 𝑑𝑘 = −𝐻−1
𝑘 ∇ 𝑓 (𝑥𝑘 ), 𝐻𝑘 > 0

• Step4计算步长因子，使得：
• Step5令：𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 := 𝑘 + 1，转至 Step2。

3.3.3 牛顿法

基本思想：当前点在 𝑥𝑘 处，选择 𝑑𝑘 = −
[
∇2 𝑓 (𝑥𝑘 )

]−1 ∇ 𝑓 (𝑥𝑘 )。可理解为：对 𝑥𝑘 处的二

次逼近函数进行最小化，也即 𝑚𝑖𝑛
{
𝑓 (𝑥𝑘 ) + ∇ 𝑓 (𝑥𝑘 )𝑇 (𝑥 − 𝑥𝑘 ) + 1

2 (𝑥 − 𝑥𝑘 )𝑇∇2 𝑓 (𝑥𝑘 )(𝑥 − 𝑥𝑘 )
}
。

则该函数要达到最小，梯度必为 0。

0 + ∇ 𝑓 (𝑥𝑘 ) + ∇2 𝑓 (𝑥𝑘 ) (𝑥 − 𝑥𝑘 ) = 0

−∇ 𝑓 (𝑥𝑘 ) = ∇2 𝑓 (𝑥𝑘 )(𝑥 − 𝑥𝑘 )

−
[
∇2 𝑓 (𝑥𝑘 )

]−1 ∇ 𝑓 (𝑥𝑘 ) = 𝑥 − 𝑥𝑘

𝑥 = 𝑥𝑘 −
[
∇2 𝑓 (𝑥𝑘 )

]−1 ∇ 𝑓 (𝑥𝑘 )

𝑥𝑘+1 = 𝑥𝑘 −
[
∇2 𝑓 (𝑥𝑘 )

]−1 ∇ 𝑓 (𝑥𝑘 ) = 𝑥𝑘 + 𝑑𝑘

因此，对于牛顿法而言，有
𝑑𝑘 = −

[
∇2 𝑓 (𝑥𝑘 )

]−1 ∇ 𝑓 (𝑥𝑘 )

𝛼𝑘 = 1

牛顿法的步骤为：

• Step1 (初始化) 𝑥0，𝜖，𝑘 := 0
• Step2若 ∥∇ 𝑓 (𝑥𝑘 )∥ ≤ 𝜉
• Step3计算 𝑑𝑘 := −

[
∇2 𝑓 (𝑥𝑘 )

]−1 ∇ 𝑓 (𝑥𝑘 )
• Step4更新 𝑥𝑘+1 := 𝑥𝑘 + 𝑑𝑘，𝑘 := 𝑘 + 1，回到 Step2
存在的问题是：𝑑𝑘 = −

[
∇2 𝑓 (𝑥𝑘 )

]−1 ∇ 𝑓 (𝑥𝑘 ) 一定是下降方向吗？
若 ∇2 𝑓 (𝑥𝑘 )的特征值为 0，则 𝑑𝑘 所需的

[
∇2 𝑓 (𝑥𝑘 )

]−1没有逆。则 𝑑𝑘 未必是下降方向。

优点：

• 当 𝑥0取得接近 𝑥𝑘，且 ∇2 𝑓 (𝑥) 有较好的性质时，二阶收敛
• 有二阶终止性（求解凸二次问题）
缺点：

• 计算量大（Hesse矩阵）
• 适用范围较窄

22



3.3.4 修正牛顿法

(1) 修正 𝛼𝑘：

𝛼𝑘 = 1是否让目标函数充分下降？→ 否。→ 采用线搜索方法重新确定 𝛼𝑘

(2) 修正方向 Hesse矩阵：
选取 𝑑𝑘 = −𝐵−1

𝑘 ∇ 𝑓 (𝑥𝑘 )。若 ∇2 𝑓 (𝑥𝑘 ) > 0，Hesse矩阵是正定的，则 𝐵𝑘 := ∇2 𝑓 (𝑥𝑘 )。
否则，采用修正方法。

第一种修正方法：

𝐵𝑘 := ∇2 𝑓 (𝑥𝑘 ) + 𝜆𝐼, 𝜆 > 0且 𝜆使得 𝐵𝑘 正定。

那么，如何选择 𝜆？∇2 𝑓 (𝑥𝑘 )的所有特征值为 𝜆1, . . . , 𝜆𝑛。本质上要求：𝜆 + 𝜆𝑖 > 0，也
即 𝜆 > max {−𝜆𝑖}
第二种修正方法：

考虑特征值分解：∇2 𝑓 (𝑥𝑘 ) = 𝑄𝑇Λ𝑄，其中Λ = 𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑛)。令 𝐵𝑘 = 𝑄𝑇𝑑𝑖𝑎𝑔(𝑇𝑖)𝑄，

𝑇𝑖 =


𝜆𝑖, 𝑖 𝑓 𝜆𝑖 ≥ 𝛿

𝛿, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

其中 𝛿为适当的正数。

3.3.5 拟牛顿法

考虑 𝑓 (𝑥) 在当前点 𝑥𝑘 处的二次近似函数：

𝑚𝑘 (𝑥) := 𝑓 (𝑥𝑘 ) + ∇ 𝑓 (𝑥𝑘 )𝑇 (𝑥 − 𝑥𝑘 ) + 1
2
(𝑥 − 𝑥𝑘 )𝑇𝐵𝑘 (𝑥 − 𝑥𝑘 )

其中 𝐵𝑘 > 0，也就是用正定矩阵 𝐵𝑘 替代了原先的 Hesse矩阵 ∇2 𝑓 (𝑥𝑘 )。
那么我们自然希望 𝐵𝑘，能够体现一些二阶信息，并且获得这一矩阵的代价小一点。

根据 𝑚𝑘 (𝑥)，我们要min𝑚𝑘 (𝑥)，则有搜索方向：𝑑𝑘 = −𝐵−1
𝑘 ∇ 𝑓 (𝑥𝑘 )。为什么这个是下降

方向呢?

∇𝑚𝑘 (𝑥) = 0

∇𝑚𝑘 (𝑥) = ∇ 𝑓 (𝑥𝑘 ) + 𝐵𝑘 (𝑥 − 𝑥𝑘 ) = 0

∴ 𝑥 = 𝑥𝑘 − 𝐵−1
𝑘 ∇ 𝑓 (𝑥𝑘 )

因此，从 𝑥𝑘 出发沿着 𝐵−1
𝑘 ∇ 𝑓 (𝑥𝑘 ) 可以走到最小点 𝑥，则这个是下降方向。

拟牛顿法的步骤为：
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• Step1 (初始化) 𝑥0，𝜖，𝑘 := 0
• Step2若 ∥∇ 𝑓 (𝑥𝑘 )∥ ≤ 𝜉
• Step3计算 𝑑𝑘 := −𝐵−1

𝑘 ∇ 𝑓 (𝑥𝑘 )
• Step4确定步长 𝛼𝑘

• Step5令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘，确定 𝐵𝑘+1，𝑘 := 𝑘 + 1，回到 Step2
如何简单地获得 𝐵𝑘+1？我们在 Step5里已经获得了 𝑥𝑘+1，那么可以计算梯度 ∇ 𝑓 (𝑥𝑘+1)。
此外，先前我们已经获得了 𝑥𝑘 和 ∇ 𝑓 (𝑥𝑘 )。因此由拉格朗日中值定理，

∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 ) = ∇2 𝑓 (𝜉)(𝑥𝑘+1 − 𝑥𝑘 )

其中 𝜉 = 𝜆𝑥𝑘 + (1 − 𝜆)𝑥𝑘+1, 𝜆 ∈ (0, 1)
对照拟牛顿方程，有

(∗) ∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 ) = 𝐵𝑘+1(𝑥𝑘+1 − 𝑥𝑘 )

为了便于记叙，则记：

𝑦𝑘 = ∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 )

𝑆𝑘 := 𝑥𝑘+1 − 𝑥𝑘

则 (∗) 可简写为 𝑦𝑘 = 𝐵𝑘+1𝑆𝑘

若记 𝐻𝑘 = 𝐵−1
𝑘 ，也即有 𝐻𝑘+1 = 𝐵−1

𝑘+1。则拟牛顿方程可以表示为：𝐵
−1
𝑘+1𝑦𝑘 = 𝑆𝑘，也即

𝑆𝑘 = 𝐻𝑘+1𝑦𝑘

注意：能够满足拟牛顿方程的矩阵有很多。

获得拟牛顿方程的方法

大致思路：基于已有信息 (𝑦𝑘 , 𝑆𝑘 , 𝐵𝑘 ) 得 𝐵𝑘+1，或基于已有信息 (𝑦𝑘 , 𝑆𝑘 , 𝐻𝑘 ) 得 𝐻𝑘+1。

方法一：选择满足拟牛顿方程且与 𝐵𝑘 近似的矩阵

min ∥𝐵 − 𝐵𝑘 ∥, 𝑠.𝑡.𝐵𝑆𝑘 = 𝑦𝑘 , 𝐵 = 𝐵𝑇。该式子的解为 𝐵𝑘+1。

也可用这一方法找 𝐻𝑘+1。min ∥𝐻 − 𝐻𝑘 ∥, 𝑠.𝑡.𝐻𝑆𝑘 = 𝑦𝑘 , 𝐻 = 𝐻𝑇。该式子的解为 𝐻𝑘+1。

方法二：对 𝐵𝑘（或 𝐻𝑘）进行校正

如，令 𝐵𝑘+1 = 𝐵𝑘 + Δ𝐵

校正方法：

(1)rank-2校正 (Δ𝐵的秩为 2)，DFP方法，BFGS方法
(2)rank-1校正 (Δ𝐵的秩为 1)，SR-1方法
DFP方法：对 𝐻𝑘 进行 rank-2校正
𝐻𝑘+1 = 𝐻𝑘+一个秩 2矩阵（秩 2矩阵就是两个秩 1矩阵相加）

𝐻𝑘+1 = 𝐻𝑘 + 𝑎𝑢𝑢𝑇 + 𝑏𝑣𝑣𝑇
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要使得 𝐻𝑘+1𝑦𝑘 = 𝑆𝑘，则

𝐻𝑘 𝑦𝑘 + 𝑎𝑢(𝑢𝑇 𝑦𝑘 ) + 𝑏𝑣(𝑣𝑇 𝑦𝑘 ) − 𝑆𝑘 = 0

考虑令：𝐻𝑘 𝑦𝑘 + 𝑎𝑢(𝑢𝑇 𝑦𝑘 ) = 0，𝑏𝑣(𝑣𝑇 𝑦𝑘 ) − 𝑆𝑘 = 0。令 𝑢 = 𝐻𝑘 𝑦𝑘，则 1 + 𝑎(𝑢𝑇 𝑦𝑘 ) = 0。
因此 𝑎 = −1

𝑢𝑇 𝑦𝑘
= −1

(𝐻𝑘 𝑦𝑘 )𝑇 𝑦𝑘 = −1
𝑦𝑇
𝑘
𝐻𝑘 𝑦𝑘
。

令 𝑣 = 𝑆𝑘，则 𝑏𝑣𝑇 𝑦𝑘 − 1 = 0。因此 𝑏 = 1
𝑣𝑇 𝑦𝑘

= 1
𝑆𝑇
𝑘
𝑦𝑘

则可以使用 DFP公式进行秩 2校正。这种校正不是唯一的。
BFGS方法：对 𝐵𝑘 进行 rank-2校正
这种方法可以达到超线性收敛，被认为是最有效的拟牛顿法，是超线性收敛。

𝐵𝑘+1 = 𝐵𝑘 + 𝑎𝑢𝑢𝑇 + 𝑏𝑣𝑣𝑇

𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝑆𝑘𝑆

𝑇
𝑘 𝐵𝑘

𝑆𝑇𝑘 𝐵𝑘𝑆𝑘
+
𝑦𝑘 𝑦

𝑇
𝑘

𝑦𝑇𝑘 𝑆𝑘

拟牛顿方向需要计算 𝐵−1
𝑘+1，可利用 Sherman-Morrison公式显式写出：

𝑑𝑘+1 = −𝐵−1
𝑘+1∇ 𝑓 (𝑥𝑘+1)

Broyden族：DFP与 BFGS的线性组合
即：𝜆𝐵𝑘+1 + (1 − 𝜆)𝐵𝑘+1, 𝜆 ∈ [0, 1]
SR-1方法：对 𝐵𝑘 进行 rank-1校正

𝐵𝑘+1 = 𝐵𝑘 +
(𝑦𝑘 − 𝐵𝑘𝑆𝑘 )(𝑦𝑘 − 𝐵𝑘𝑆𝑘 )𝑇

(𝑦𝑘 − 𝐵𝑘𝑆𝑘 )𝑇𝑆𝑘
𝐵𝑘+1 = 𝐵𝑘 + 𝑎𝑢𝑢𝑇

上式要满足 𝐵𝑘+1𝑆𝑘 = 𝑦𝑘，𝐵𝑘𝑆𝑘 + 𝑎𝑢(𝑢𝑇𝑆𝑘 ) = 𝑦𝑘，𝑎𝑢(𝑢𝑇𝑆𝑘 ) = 𝑦𝑘 − 𝐵𝑘𝑆𝑘。
令 𝑢 = 𝑦𝑘 − 𝐵𝑘𝑆𝑘，则 𝑎𝑢𝑇𝑆𝑘 = 1，也即 𝑎 = 1

𝑢𝑇 𝑆𝑘
= 1

(𝑦𝑘−𝐵𝑘𝑆𝑘 )𝑇 𝑆𝑘，则得 SR-1。
SR-1方法的迭代公式更简单，但不能保证正定性。适当条件下，能达到 n步超线性收

敛。

3.3.6 共轭方向法

线性共轭梯度法

考虑问题：min 𝑓 (𝑥) = 1
2𝑥
𝑇𝑄𝑥 + 𝐶𝑇𝑥, 𝑄 > 0

(1)当 𝑄为对角阵时
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𝑓 (𝑥) = 1
2𝑥
𝑇

©­­­­­­«
𝑏1

𝑏2

. . .

𝑏𝑛

ª®®®®®®¬
𝑥 + 𝐶𝑇𝑥

(2)当 𝑄不是对角阵时

𝑓 (𝑥) = 1
2𝑥
𝑇𝑄𝑥 + 𝐶𝑇𝑥

对 𝑄做分解，𝑄 = 𝑃𝑇𝐷𝑃，其中 𝐷 =

©­­­­­­«
𝜆1

𝜆2

. . .

𝜆𝑛

ª®®®®®®¬
，𝑃为正交矩阵。

则， 𝑓 (𝑥) = 1
2𝑥
𝑇𝑃𝑇𝐷𝑃𝑥 +𝐶𝑇𝑥。令 𝑥 = 𝑝𝑥，则 ˆ𝑓 (𝑥∗) = 1

2𝑥
∗𝐷𝑇𝑥∗

𝑇 + (𝑃𝐶)𝑇𝑥∗。找到 𝑥∗后，

𝑥∗ = 𝑃𝑇𝑥∗。

上述方法原理上可行，但对 𝑄分解需要求其特征值。若矩阵的维数很大，则计算时比

较困难。

因此选择用共轭梯度法，找到 (𝑑0, 𝑑1, . . . , 𝑑𝑛−1)𝑆，且希望 𝑆能像 𝑃一样，对 𝑄做一个

对角化。

共轭方向法

定义 8. 考虑正定矩阵 𝑄 及非零向量 𝑑𝑖, 𝑑 𝑗。若 (𝑑𝑖)𝑇𝑄𝑑 𝑗 = 0，则 𝑑𝑖, 𝑑 𝑗 关于矩阵 𝑄 共

轭。

向量组 𝑑0, 𝑑1, . . . , 𝑑𝑘 关于矩阵 𝑄共轭。

注 3.1. 共轭与正交的区别
(1) 若 𝑑0, 𝑑1, . . . , 𝑑𝑘 关于 𝐼 共轭，则 𝑑0, 𝑑1, . . . , 𝑑𝑘 正交

(2) 若 𝑑0, 𝑑1, . . . , 𝑑𝑘关于𝑄（正定矩阵）共轭，则 (𝑑𝑖)𝑇𝑄𝑑 𝑗 = (𝑑𝑖)𝑇𝑃𝑇𝑃𝑑 𝑗 = (𝑃𝑑𝑖)𝑇 (𝑃𝑑 𝑗 ) = 0
(3) 共轭向量组必然是线性无关的。

定义 9. 共轭方向法：min 𝑓 (𝑥) = 1
2𝑥
𝑇𝑄𝑥 + 𝐶𝑇𝑥, 𝑄 > 0

给定初始点 𝑥0及一组关于 𝑄的共轭方向 𝑑0, 𝑑1, . . . , 𝑑𝑛−1

令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0, . . . , 𝑛 − 1
即 𝑥0 𝑑0𝛼0−→ 𝑥1 𝑑1𝛼1−→ 𝑥2 ···−→ 𝑥𝑛−1 𝑑𝑛−1𝛼𝑛−1−→ 𝑥𝑛，

其中 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜙(𝛼) := 𝑓 (𝑥𝑘 + 𝛼𝑑𝑘 )
此时 𝜙

′ (𝛼𝑘 ) = 0 = ∇ 𝑓 (𝑥𝑘+𝛼𝑘𝑑𝑘 )𝑇𝑑𝑘 = (𝑄(𝑥𝑘+𝛼𝑘𝑑𝑘 )+𝐶)𝑇𝑑𝑘 = (𝑄𝑥𝑘+𝐶)𝑇𝑑𝑘+𝛼𝑘 (𝑑𝑘 )𝑇𝑄𝑑𝑘

所以 𝛼𝑘 = − (𝑄𝑥𝑘+𝑏)𝑇 𝑑𝑘
(𝑑𝑘 )𝑇𝑄𝑑𝑘 = −∇ 𝑓 (𝑥𝑘 )𝑇 𝑑𝑘

(𝑑𝑘 )𝑇𝑄𝑑𝑘

几何解释
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𝑥0 + 𝛼0𝑑
0 + 𝛼1𝑑

1 + · · · + 𝛼𝑛−1𝑑
𝑛−1

构造 𝑆 = (𝑑0, 𝑑1, . . . , 𝑑𝑛−1)，其中 𝑑0, 𝑑1, . . . , 𝑑𝑛−1线性无关，𝑆可逆。

则

𝑆𝑇𝑄𝑆 =
©­­­«

(
𝛼0)𝑇
...(

𝛼𝑛−1)𝑇
ª®®®¬𝑄

(
𝑑0 . . . 𝑑𝑛−1

)
= ((𝑑𝑖)𝑇𝑄𝑑 𝑗 )𝑛×𝑛

是个对角阵。且

𝐼 = 𝑆−1(𝑑0, 𝑑1, . . . , 𝑑𝑛−1) = (𝑆−1𝑑0, . . . , 𝑆−1𝑑𝑛−1), 𝑆−1𝑑𝑖 = 𝑒𝑖+1, 𝑖 = 0, . . . , 𝑛 − 1

则 𝑓 (𝑥) = 1
2𝑥
𝑇𝑄𝑥 + 𝐶𝑇𝑥 𝑥=𝑆

−1𝑥−→ 𝑓 (𝑥) = 1
2𝑥
𝑇𝑆𝑇𝑄𝑆𝑥 + (𝑆𝑇𝐶)𝑇𝑥

则

𝑥0 + 𝛼0𝑑
0 + 𝛼1𝑑

1 + · · · + 𝛼𝑛−1𝑑
𝑛−1 = 𝑆−1𝑥0 + 𝛼0𝑆

−1𝑑0 + 𝛼𝑖𝑆−1𝑑1 + . . . + 𝛼𝑛−1𝑆
−1𝑑𝑛−1

=𝑆−1𝑥0 + 𝛼0𝑒1 + 𝛼1𝑒2 + · · · + 𝛼𝑛−1𝑒𝑛

共轭方向法的重要特征

考虑问题 min 𝑓 (𝑥) = 1
2𝑥
𝑇𝑄𝑥 + 𝐶𝑇𝑥, 𝑄 > 0

给定初始点 𝑥0及一组关于 𝑄的共轭方向 𝑑0, 𝑑1, . . . , 𝑑𝑛−1，令

𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘

𝛼𝑘 ==
−∇ 𝑓 (𝑥𝑘 )𝑇𝑑𝑘
(𝑑𝑘 )𝑇𝑄𝑑𝑘

, 𝑘 = 0, . . . , 𝑛 − 1

则点列
{
𝑥𝑘

}
有如下特征：

(1) −∇ 𝑓 (𝑥𝑘 )𝑇𝑑𝑖0, 𝑖 = 0, . . . , 𝑘 − 1，与之前使用的搜索方向垂直

证明.
∇ 𝑓

(
𝑥𝑘

)𝑇
𝑑𝑘−1 = 0, 𝑘 = 1, . . . , 𝑛

𝛼𝑘−1 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓 (𝑥𝑘+1 + 𝛼𝑑𝑘−1) = 𝜙(𝛼)

𝜙′(𝛼𝑘−1) = 0 = ∇ 𝑓
(
𝑥𝑘−1 + 𝛼𝑘−1𝑑

𝑘−1
)𝑇
𝑑𝑘−1 = ∇ 𝑓

(
𝑥𝑘

)𝑇
𝑑𝑘−1

∇ 𝑓
(
𝑥𝑘

)𝑇
𝑑𝑖, 𝑖 = 0, 1, . . . , 𝑘 − 2

=
(
𝑄𝑥𝑘 + 𝑐

)𝑇
𝑑𝑖 = (𝑄(𝑥𝑖+1+𝛼𝑖+1𝑑

𝑖+1+· · ·+𝛼𝑘−1𝑑
𝑘−1)+𝐶)𝑇𝑑𝑖 =

(
𝑄𝑥𝑖+1 + 𝑐

)𝑇
𝑑𝑖 = ∇ 𝑓 (𝑥𝑖+1)𝑇𝑑𝑖 = 0
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(2) 𝑥𝑘 := 𝑎𝑟𝑔𝑚𝑖𝑛
{ 1

2𝑥
𝑇𝑄𝑥 + 𝐶𝑇𝑥 |𝑥 ∈ 𝑋 𝑘

}
，其中 𝑋 𝑘 =

{
𝑥0 +

∑𝑘−1
𝑖=0 𝛼𝑖𝑑

𝑖 |𝛼𝑖 ∈ 𝑅, 𝑖 = 1, . . . , 𝑘 − 1
}
，

𝑥𝑘 = 𝑥0 + 𝛼1𝑑
0 + · · · + 𝛼𝑘−1𝑑

𝑘−1

证明. 记函数 𝜙(𝑎0, 𝑎1, . . . , 𝑎𝑘−1) = 1
2

(
𝑥0 +

∑𝑘−1
𝑓=0 𝑎𝑖𝑑

𝑖
)𝑇
𝑄

(
𝑥0 +

∑𝑘−1
𝑖−0 𝑎𝑖𝑑

𝑖
)
+𝐶𝑇

(
𝑥0 +

∑𝑘−1
𝑖=0 𝑎𝑖𝑑

𝑖
)
。

要证 (𝑎0, 𝑎1, . . . , 𝑎𝑘−1) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜙(𝑎0, 𝑎1, . . . , 𝑎𝑘−1)，只需验证 𝜕𝜙(𝛼0,...,𝛼𝑘−1)
𝜕𝛼𝑖

| (𝛼0,...,𝛼𝑘−1) =

0,也即
(
𝑄

(
𝑥0 + 𝛼0𝑑

0 + · · · + 𝛼𝑘−1𝑑
𝑘−1) + 𝐶)𝑇

𝑑𝑖 =
(
𝑄𝑥𝑘 + 𝑐

)𝑇
𝑑𝑖 = ∇ 𝑓

(
𝑥𝑘

)𝑇
𝑑𝑖 = 0所以

得证。

共轭方向法在 𝑛步内就能找到解。

共轭梯度法（共轭方向法的一种）

借助当前点 𝑥𝑘 的梯度信息构造共轭方向。

𝑥0 𝑑0

−→ 𝑥1 𝑑1

−→ 𝑥2 ···−→ 𝑥𝑘−1 𝑑𝑘−1

−→ 𝑥𝑘

此时 𝑑1与 𝑑0共轭，𝑑2与 𝑑1与 𝑑0都共轭

共轭梯度法的步骤为：

• Step1 (初始化) 𝑥0，记 𝑑0 = −∇ 𝑓 (𝑥0)为负梯度方向，𝜖 > 0，𝑘 := 0
• Step2若 ∥∇ 𝑓 (𝑥𝑘 )∥ < 𝜖，终止。否则，
• Step3计算步长 𝛼𝑘 = −∇ 𝑓 (𝑥𝑘 )𝑇 𝑑𝑘

(𝑑𝑘 )𝑇𝑄𝑑𝑘

• Step4令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘，并计算方向 𝑑𝑘+1，使之与之前的方向都共轭 (∗) 𝑑𝑘+1 =

−∇ 𝑓 (𝑥𝑘+1)+some term令 𝑘 := 𝑘 + 1，回到 Step2
(∗) 式具体为:

𝑑𝑘+1 = −∇ 𝑓 (𝑥𝑘+1) + 𝛽𝑘𝑑𝑘 , 𝛽𝑘 =
∇ 𝑓 (𝑥𝑘+1)𝑇𝑄𝑑𝑘

(𝑑𝑘 )𝑇𝑄𝑑𝑘

可证，𝑑𝑘+1与 𝑑0, . . . , 𝑑𝑘 均关于 𝑄共轭，也即 (𝑑𝑘+1)𝑇𝑄𝑑𝑖 = 0。
不妨有，𝑑𝑘+1 = −∇ 𝑓 (𝑥𝑘+1) + 𝛽0𝑑

0 + 𝛽1𝑑
1 + · · · + 𝛽𝑘𝑑𝑘，(𝑑𝑘+1)𝑇𝑄𝑑𝑖 = 0，则

(−∇ 𝑓 (𝑥𝑘+1) + 𝛽0𝑑
0 + 𝛽1𝑑

1 + · · · + 𝛽𝑘𝑑𝑘 )𝑇𝑄𝑑𝑖 = 0

−∇ 𝑓 (𝑥𝑘+1)𝑇𝑄𝑑𝑖 + 𝛽𝑖 (𝑑𝑖)𝑇𝑄𝑑𝑖 = 0

𝛽𝑖 =
∇ 𝑓 (𝑥𝑘+1)𝑇𝑄𝑑𝑖

(𝑑𝑖)𝑇𝑄𝑑𝑖 , 𝑖 = 0, . . . , 𝑘

。

当 𝑖 = 0, 1, . . . , 𝑘 − 1，主要分析 𝛽𝑖 的分子

(∗) ∇ 𝑓 (𝑥𝑘+1)𝑇𝑄𝑑𝑖

其中 𝛼𝑖𝑑
𝑖 = 𝑥𝑖+1 − 𝑥𝑖，则有

𝑄𝑑𝑖 = 𝑄
𝑥𝑖+1 − 𝑥𝑖
𝛼𝑖

= (𝑄𝑥𝑖+1 −𝑄𝑥𝑖) 1
𝛼𝑖

= (∇ 𝑓 (𝑥𝑖+1) − ∇ 𝑓 (𝑥𝑖)) 1
𝛼𝑖
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所以

(∗) ∇ 𝑓 (𝑥𝑘+1)𝑇 (∇ 𝑓 (𝑥𝑖+1) − ∇ 𝑓 (𝑥𝑖)) 1
𝛼𝑖

因为 𝑑𝑖+1 = ∇ 𝑓 (𝑥𝑖+1)加上 𝑑0 + · · · + 𝑑𝑖 的组合，所以 ∇ 𝑓 (𝑥𝑖+1) = −𝑑𝑖+1加上 𝑑0 + · · · + 𝑑𝑖 的组
合。所以 ∇ 𝑓 (𝑥𝑖+1)𝑇∇ 𝑓 (𝑥𝑖+1) = 0

公式化简

共轭梯度法的步长公式 𝛼𝑘 = −∇ 𝑓 (𝑥𝑘)𝑇 𝑑𝑘
(𝑑𝑘)𝑇𝑄𝑑𝑘 可化简为 𝛼𝑘 =

∇ 𝑓 (𝑥𝑘)𝑇 ∇ 𝑓 (𝑥𝑘)
(𝑑𝑘)𝑇𝑄𝑑𝑘 。

过程：因为 𝑑𝑘 = −∇ 𝑓
(
𝑥𝑘

)
+𝛽𝑘−1𝑑

𝑘−1，所以∇ 𝑓
(
𝑥𝑘

)𝑇
𝑑𝑘 = −∇ 𝑓

(
𝑥𝑘

)𝑇 ∇ 𝑓 (
𝑥𝑘

)
+𝛽𝑘−1∇ 𝑓

(
𝑥𝑘

)𝑇
𝑑𝑘−1 =

−∇ 𝑓
(
𝑥𝑘

)𝑇 ∇ 𝑓 (
𝑥𝑘

)
共轭梯度法步长公式中的系数

𝛽𝑘 =
∇ 𝑓

(
𝑥𝑘+1) 𝑄𝑑𝑘

(𝑑𝑘 )𝑇𝑄𝑑𝑘

因为 ∇ 𝑓 (𝑥𝑘+1)𝑇𝑄𝑑𝑘 = ∇ 𝑓 (𝑥𝑘+1)𝑇 (∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 )) 1
𝛼𝑘
，所以

𝛽𝑘 =
∇ 𝑓 (𝑥𝑘+1)𝑇 (∇ 𝑓 (𝑥𝑘+1 − ∇ 𝑓 (𝑥𝑘 )

∇ 𝑓 (𝑥𝑘 )𝑇∇ 𝑓 (𝑥𝑘 )
=
∇ 𝑓 (𝑥𝑘+1)𝑇∇ 𝑓 (𝑥𝑘+1)
∇ 𝑓 (𝑥𝑘 )𝑇∇ 𝑓 (𝑥𝑘 )

推广：非线性共轭梯度法（FR/DRP），用于求解一般性的 min 𝑓 (𝑥)
• Step1 (初始化) 𝑥0，记 𝑑0 = −∇ 𝑓 (𝑥0)为负梯度方向，𝜖 > 0，𝑘 := 0
• Step2若 ∥∇ 𝑓 (𝑥𝑘 )∥ < 𝜖，终止。否则，
• Step3利用线性搜索计算步长 𝛼𝑘

• Step4令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘，并计算方向 𝑑𝑘+1，使之与之前的方向都共轭

(∗) 𝑑𝑘+1 = −∇ 𝑓 (𝑥𝑘+1) + 𝛽𝑘𝑑𝑘

(𝑃𝑅𝑃) 𝛽𝑘 =
∇ 𝑓 (𝑥𝑘+1)𝑇 (∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 ))

∇ 𝑓 (𝑥𝑘 )𝑇∇ 𝑓 (𝑥𝑘 )

(𝐹𝑅) 𝛽𝑘 =
∇ 𝑓 (𝑥𝑘+1)𝑇∇ 𝑓 (𝑥𝑘+1)
∇ 𝑓 (𝑥𝑘 )𝑇∇ 𝑓 (𝑥𝑘 )

令 𝑘 := 𝑘 + 1，回到 Step2
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4 约束优化问题（一）最优性条件

约束优化问题
min 𝑓 (𝑥)

𝑠.𝑡.𝑔𝑖 (𝑥) ≤ 0

ℎ𝑖 (𝑥) = 0

记可行集为：𝑆 = {𝑥 |𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚, ℎ𝑖 (𝑥) = 0, 𝑖 = 1, . . . , 𝑙}
讨论的基础为： 𝑓 (𝑥), 𝑔𝑖 (𝑥), ℎ𝑖 (𝑥)均为连续可微函数。
最优解的一阶必要条件——KKT条件（Karush-Kuhn-Tucker）假设 𝑥∗ 是问题 (𝑃) 的

局部最优解，且 𝑥∗ 处某个适当的条件满足 constraint qualification（约束规范）成立，则存
在 𝜆(m维向量)和 𝜇(l维向量)使得：

∇ 𝑓 (𝑥∗) +
𝑚∑
𝑖=1

(𝜆𝑖) ∇𝑔𝑖 (𝑥∗) +
𝑙∑
𝑖=1

𝜇𝑖∇ℎ𝑖 (𝑥∗) = 0

𝜆𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑚

𝑔𝑖 (𝑥∗) ≤ 0, 𝑖 = 1, . . . , 𝑚

ℎ𝑖 (𝑥∗) = 0, 𝑖 = 1, . . . , 𝑙

𝜆𝑖𝑔𝑖 (𝑥∗) = 0, 𝑖 = 1, . . . , 𝑚

以上条件称为 KKT条件。
证明 KKT条件的思路：

定义 10. 可行点列：对于 𝑥∗ ∈ 𝑆，若点列 {𝑥𝑘 } ⊂ 𝑆 满足所有 𝑥𝑘 ≠ 𝑥∗, lim𝑘→∞ 𝑥𝑘 = 𝑥∗，

则其为可行点列

基本思路：若 𝑥∗ ∈ 𝑆 是局部最优解，则沿着任意可行点列目标函数不会下降（即当 k
充分大时，有 𝑓 (𝑥𝑘 ) ≥ 𝑓 (𝑥∗)）。

考虑 𝑥∗处的集合 𝐷 (𝑥∗) =
{
𝑑 | ∇ 𝑓 (𝑥∗)𝑇 𝑑 < 0

}
，均为 𝑓 (𝑥) 在 𝑥∗处的下降方向。

考虑 𝑥∗处的集合 𝑇 (𝑥∗) =
{
𝛼𝑑 | 𝛼 > 0, 𝑑 = lim𝑘→∞

𝑥𝑘−𝑥∗
∥𝑥𝑘−𝑥∗∥ , 𝑥

𝑘 → 𝑥∗, 𝑥𝑘 ≠ 𝑥∗, 𝑥∗ ∈ 𝑆
}
，该

集合称为 𝑥∗处的切锥。

则最优解的必要条件：若 𝑥∗是问题 (𝑃) 的局部最优解，则 𝐷 (𝑥∗) ∩ 𝑇 (𝑥∗) = 𝜙，则证：
任取 𝛼𝑑 ∈ 𝑇 (𝑥∗)，都有 ∇ 𝑓 (𝑥∗)𝑇𝑑 ≥ 0。

30



证明. 任取 𝛼𝑑 ∈ 𝑇 (𝑥∗)，𝑑 = lim𝑘→∞
𝑥𝑘−𝑥∗
∥𝑥𝑘−𝑥∗∥ , 𝑥

𝑘 → 𝑥∗, 𝑥𝑘 ≠ 𝑥∗, 𝑥∗ ∈ 𝑆.。当 𝑘 充分大，必

有 0 ≤ 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗) = ∇ 𝑓 (𝑥∗)𝑇 (𝑥𝑘 − 𝑥∗) + 𝑜(∥𝑥𝑘 − 𝑥∗∥)，所以

0 ⩽
𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗)
∥𝑥𝑘 − 𝑥∗ | |

=
∇ 𝑓 (𝑥𝑥)𝑇 (𝑥𝑘 − 𝑥∗)

∥𝑥𝑘 − 𝑥∗∥
+
𝑜

(

𝑥𝑘 − 𝑥∗

)
∥𝑥𝑘 − 𝑥∗∥

令 𝑘 → 0,∇ 𝑓 (𝑥∗)𝑇𝑑 ≥ 0
与切锥关系密切的有两个集合：（一）可行方向集

𝑥∗沿 𝑑 方向走 𝜆,𝜉 是一个小小的正数，

𝐹 (𝑥∗) = {𝑑 | 𝑥∗ + 𝜆𝑑 ∈ 𝑆,∀𝜆 ∈ (0, 𝜉)} ,

易知，𝐹 (𝑥∗) ⩽ 𝑇 (𝑥∗) ,∀𝑑 ∈ 𝐹 (𝑥∗)，即 𝑥∗ + 𝜆𝑑 ∈ 𝑆,∀𝜆 ∈ (0, 𝜉)。构造 𝑥𝑘 = 𝑥∗ + 𝜆𝑘𝑑, 𝜆𝑘 →
0, 𝜆𝑘 ∈ (0, 𝜉)，则

lim
𝑥𝑘 − 𝑥∗
∥𝑥 − 𝑥∗∥ =

𝑑

∥𝑑∥ ∈ 𝑇 (𝑥∗)

。

（二）记 𝑥∗处的有效指标集 𝐼 = {𝑖 | 𝑔𝑖 (𝑥∗) = 0}，定义集合

𝐹1 (𝑥∗) =
{
𝑑 | ∇𝑔𝑖 (𝑥∗)𝑇 𝑑 ⩽ 0, 𝑖 ∈ 𝐼,∇ℎ𝑖 (𝑥∗)𝑇 , 𝑑 = 0, 𝑖 ∈ 1, . . . , 𝑙

}
。易知，𝑇 (𝑥∗) ⊆ 𝐹1 (𝑥∗)。任取 𝛼𝑑 ∈ 𝑇 (𝑥∗),只需要：
（1）∇𝑔𝑖 (𝑥∗)𝑇𝑑 ≤ 0, 𝑖 ∈ 𝐼
（2）∇ℎ𝑖 (𝑥∗)𝑇𝑑 = 0, 𝑖 = 1, . . . , 𝐼, 𝑑 = lim𝑘→∞

𝑥𝑘−𝑥∗
∥𝑥𝑘−𝑥∗∥ , 𝑥

𝑘 → 𝑥∗, 𝑥𝑘 ≠ 𝑥∗, 𝑥∗ ∈ 𝑆
对于（1）

𝑖 ∈ 𝐼, 𝑔𝑖 (𝑥𝑘 ) − 𝑔𝑖 (𝑥∗) = ∇𝑔𝑖 (𝑥∗)𝑇 (𝑥𝑘 − 𝑥∗) + 𝑜∥𝑔𝑖 (𝑥𝑘 ) − 𝑔𝑖 (𝑥∗)∥ ≤ 0

所以 ∇𝑔𝑖 (𝑥∗)𝑇 (𝑥𝑘−𝑥∗)+𝑜∥𝑔𝑖 (𝑥𝑘 )−𝑔𝑖 (𝑥∗)∥
∥𝑥𝑘−𝑥∗∥ ≤ 0，∇𝑔𝑖 (𝑥∗)𝑇 ≤ 0

对于（2）
ℎ𝑖 (𝑥𝑘 ) − ℎ𝑖 (𝑥∗) = ∇ℎ𝑖 (𝑥∗)𝑇 (𝑥𝑘 − 𝑥∗) + 𝑜() = 0

∇ℎ𝑖 (𝑥∗)𝑇𝑑 = 0

所以：𝐹 (𝑥∗) ⊆ 𝑇 (𝑥∗) ⊆ 𝐹1 (𝑥∗)
那么如何运用 𝐹1(𝑥∗) 呢？
由约束规范，𝑇 (𝑥∗) = 𝐹1(𝑥∗)。
常用的约束规范有：

(1)𝑔𝑖 (𝑥), 𝑖 ∈ 𝐼, ℎ𝑖 (𝑥), 𝑖 = 1, . . . , 𝑙 均为线性函数
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(2)向量组 ∇𝑔𝑖 (𝑥), 𝑖 ∈ 𝐼,∇ℎ𝑖 (𝑥∗), 𝑖 − 1, . . . , 𝑙 线性无关（LICQ）
(3)Slater condition
若 𝑥∗ ∈ 𝑆是最优解且某种约束规范成立，则

𝐷 (𝑥∗) ∩ 𝐹1 (𝑥∗) = 𝜙

满足上述时，（由 Farkas引理）KKT条件成立。
由 Farkas引理：𝐴𝑚×𝑛 ∈ 𝑅𝑛，𝐴𝑑 ≤ 0, 𝐶𝑇𝑑 > 0与 𝐴𝑇 𝑦 = 𝑐, 𝑦 ≥ 0有且仅有一个问题有

解。我们要证明 𝐷 (𝑥∗)⋂ 𝐹1 (𝑥∗) = 𝜙当且仅当 KKT条件成立。
证：𝐷 (𝑥∗)⋂ 𝐹1 (𝑥∗) = 𝜙 ⇔

∇ 𝑓 (𝑥∗)𝑇 𝑑 < 0
∇𝑔𝑖 (𝑥∗)𝑇 𝑑 ⩽ 0 𝑖𝜀𝐼

∇ℎ𝑖 (𝑥∗)𝑇 𝑑 = 0, 𝑖 = 1, · · · 𝑙

 𝑑 无解
则 

−∇ 𝑓 (𝑥∗)𝑇 𝑑 > 0
∇𝑔𝑖 (𝑥∗)𝑇 ⩽ 0 𝑖 ∈ 𝐼
∇ℎ𝑖 (𝑥∗)𝑇 𝑑𝜀0 𝑖 = 1, · · · 𝑙

−∇ℎ𝑖 (𝑥∗)𝑇 𝑑 ⩽ 0 𝑖 = 1, · · · 𝑙

则 𝐶 = −∇ 𝑓 (𝑥∗)，𝐴 =
©­­­«

∇𝑔𝑖 (𝑥∗)𝑇 , 𝑖 ∈ 𝐼
∇ℎ𝑖 (𝑥∗)𝑇 , 𝑖 = 1, · · · 𝑙
−∇ℎ𝑖 (𝑥∗)𝑇 , 𝑖 = 1, · · · 𝑙

ª®®®¬
由 Farkas引理，另一问题 𝐴𝑇 𝑦 = 𝐶, 𝑦 ≥ 0，也即(

∇𝑔𝑖 (𝑥∗) , ∇ℎ𝑖 (𝑥∗) , −∇ℎ𝑖 (𝑥∗ )
𝑖 ∈ 1 𝑖 = 1, · · · 𝑡 𝑖 = 1, · · · 𝑙

)
𝑦 = −∇ 𝑓 (𝑥∗)

其中 𝑦 ≥ 0, 𝑦 =
©­­­«
𝑦𝑖, 𝑖 ∈ 𝐼
𝑦𝑖, 𝑖 = 1, . . . 𝑙
𝑦̃𝑖, 𝑖 = 1, . . . 𝑙

ª®®®¬ ≤ 0即 (𝑦𝑖, 𝑦̄𝑖), 𝑦̃𝑖) ≥ 0。

则：∇ 𝑓 (𝑥∗) +
∑

𝑖=𝐼 𝑦𝑖∇𝑔𝑖 (𝑥∗) +
∑𝑙

𝑖=1 ( 𝑦̄𝑖) ∇ℎ𝑖 (𝑥∗) −
∑𝑙

𝑖=1 ( 𝑦̃𝑖) ∇ℎ𝑖 (𝑥∗) = 0, (𝑦𝑖, 𝑦̄𝑖), 𝑦̃𝑖) ≥ 0
也即：

∇ 𝑓 (𝑥∗) +
∑
𝑖=𝐼

𝑦𝑖∇𝑔𝑖 (𝑥∗) +
𝑙∑
𝑖=1

( 𝑦̄𝑖 − 𝑦̃𝑖) ∇ℎ𝑖 (𝑥∗) = 0

将 𝑦𝑖 看作 𝜆𝑖，𝑦̄𝑖 − 𝑦̃𝑖 看作 𝜇𝑖。
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则： 
∇ 𝑓 (𝑥∗) +

∑
𝑖∈𝐼 𝜆𝑖∇𝑔𝑖 (𝑥∗) +

∑𝑙
𝑖=1 𝜇𝑖∇ℎ𝑖 (𝑥∗) = 0

𝜆𝑖 = 𝑦𝑖

𝜇𝑖 = 𝑦̄𝑖 − 𝑦̃𝑖
所以有： 

∇ 𝑓 (𝑥∗) +
∑𝑚

𝑖=1 𝜆𝑖∇𝑔𝑖 (𝑥∗) +
∑𝑙

𝑖=1 𝜇𝑖∇ℎ𝑖 (𝑥∗) = 0
𝜆𝑖𝑔𝑖 (𝑥∗) = 0, 𝑖 = 1, . . . 𝑚
𝜆𝑖 ⩾ 0

KKT条件

∇ 𝑓 (𝑥∗) +
𝑚∑
𝑖=1

𝜆𝑖∇𝑔𝑖 (𝑥∗) +
𝑙∑
𝑖=1

𝜇𝑖∇ℎ𝑖 (𝑥∗) = 0 (1)

𝜆1 ≥ 0, 𝑖 = 1, . . . , 𝑚 (2)

𝑔𝑖 (𝑥∗) ≤ 0, 𝑖 = 1, . . . , 𝑚 (3)

ℎ𝑖 (𝑥∗) = 0, 𝑖 = 1, . . . , 𝑙 (4)

𝜆𝑖𝑔𝑖 (𝑥∗) = 0, 𝑖 = 1, . . . , 𝑚 (5)

(1)+(2): dual feasible(DF，对偶可行条件)
(3)+(4): primol feasible（PF，原则可行/原问题可行条件）
(5): complementary slack（CK，互补松弛条件）
𝜆𝑖，𝜇𝑖 称为拉格朗日乘子，可反映约束条件右端发生扰动时最优目标函数值的变化情

况（影子价格）

在什么条件下，KKT点就是最优解？{
(1) : 𝑓 (𝑥), 𝑔𝑖 (𝑥), 𝑖, . . . , 𝑚
(2) : ℎ𝑖 (𝑥) 𝑖 = 1, . . . , 𝑙

(1)均为凸函数，(2)为线性函数。

证明. 设 𝑥∗满足 KKT条件。要证 𝑥∗是最优的。

∀𝑥 ∈ 𝑆 𝑓 (𝑥) − 𝑓 (𝑥∗) ⩾ ∇ 𝑓 (𝑥∗)𝑇 (𝑥 − 𝑥∗) = −
∑

𝜆𝑖∇𝑔𝑖 (𝑥∗)𝑇 (𝑥 − 𝑥∗) −
∑

𝜇∇ℎ𝑖 (𝑥∗)𝑇 (𝑥 − 𝑥∗)

而

∇𝑔𝑖 (𝑥∗)𝑇 (𝑥 − 𝑥∗) ≤ 𝑔(𝑥) − 𝑔(𝑥∗)
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−∇𝑔𝑖 (𝑥∗)𝑇 (𝑥 − 𝑥∗) ≥ −(𝑔(𝑥) − 𝑔(𝑥∗))

∇ℎ𝑖 (𝑥) = 𝑎𝑖

−∇ℎ𝑖 (𝑥)(𝑥 − 𝑥∗) = −𝑎𝑇𝑖 (𝑥 − 𝑥∗) = −(ℎ𝑖 (𝑥) − ℎ𝑖 (𝑥∗))

因为 𝑥 ∈ 𝑆, 𝑥∗ ∈ 𝑆，所以 ℎ𝑖 (𝑥) − ℎ𝑖 (𝑥∗) = 0.
所以 𝑓 (𝑥) − 𝑓 (𝑥∗) ≥

∑
𝜆𝑖 (𝑔(𝑥∗) − 𝑔(𝑥)) =

∑
𝜆𝑖𝑔(𝑥∗ −

∑
𝜆𝑖𝑔𝑖 (𝑥) = −

∑
𝜆𝑖𝑔𝑖 (𝑥) ≥ 0，

∀𝑥 ∈ 𝑆, 𝑓 (𝑥) − 𝑓 (𝑥∗) ≥ 0
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5 约束优化问题（二）最优性条件

之前，在 (𝑃) 中，若： {
(1) : 𝑓 (𝑥), 𝑔𝑖 (𝑥), 𝑖, . . . , 𝑚
(2) : ℎ𝑖 (𝑥) 𝑖 = 1, . . . , 𝑙

(1)均为凸函数，(2)为线性函数，则 KKT点为 (𝑃) 最优解。
那么，若 (1)或 (2)不满足，在什么条件下，KKT点依旧是最优解呢？→要采用二阶

信息。

假设 𝑥∗满足 KKT条件，也即：

∇ 𝑓 (𝑥∗) +
∑𝑚

𝑖=1 𝜆𝑖∇𝑔𝑖 (𝑥∗) +
∑𝑙

𝑖=1 𝜇𝑖∇ℎ𝑖 (𝑥∗) = 0
𝜆1 ≥ 0, 𝑖 = 1, . . . , 𝑚
𝑔𝑖 (𝑥∗) ≤ 0, 𝑖 = 1, . . . , 𝑚
ℎ𝑖 (𝑥∗) = 0, 𝑖 = 1, . . . , 𝑙
𝜆𝑖𝑔𝑖 (𝑥∗) = 0, 𝑖 = 1, . . . 𝑚

定义一个新的函数：𝐿 (𝑥) = 𝑓 (𝑥) +
∑
𝜆𝑖𝑔𝑖 (𝑥) +

∑
𝜇𝑖ℎ𝑖 (𝑥)其中，𝜆𝑖 和 𝜇𝑖 即 KKT条件中

的系数。

则可知：(1)∇𝐿 (𝑥∗) = 0(由 KKT知)
(2)𝐿 (𝑥) = 𝑓 (𝑥) +

∑
𝜆𝑖𝑔𝑖 (𝑥∗) +

∑
𝜇𝑖ℎ𝑖 (𝑥∗) = 𝑓 (𝑥∗)

(3)∀𝑥 ∈ 𝑆, 𝐿 (𝑥) = 𝑓 (𝑥) +
∑
𝜆𝑖𝑔𝑖 (𝑥) +

∑
𝜇𝑖ℎ𝑖 (𝑥) ≤ 0，所以 𝐿 (𝑥) ≤ 𝑓 (𝑥)

由 (2)(3)，若 𝑥∗为最优解，则 KKT点 𝑥∗为 (𝑃)最优解。

证明.
𝐿 (𝑥∗) ≤ 𝐿 (𝑥),∀𝑥 ∈ 𝑆

𝐿 (𝑥∗) ≤ 𝑓 (𝑥∗)

𝐿 (𝑥) ≤ 𝑓 (𝑥)

所以 𝑓 (𝑥∗) ≤ 𝑓 (𝑥),∀𝑥 ∈ 𝑆

（一）假设 𝑥∗为 KKT点；𝜆，𝜇，𝐿 (𝑥)。∇𝐿 (𝑥∗) = 0
1）若 ∇2𝐿 (𝑥∗) ≥ 0,∀𝑥 ∈ 𝑆 则 𝐿 (𝑥) 在 𝑆 上是凸的，则 𝑥∗ 为 𝐿 (𝑥) 的全局最优解，则 𝑥∗

为 (𝑃) 的全局最优解
2）若 ∇2𝐿 (𝑥∗) ≥ 0,∀𝑥 ∈ 𝑆⋂

𝑁𝑠 (𝑥∗) 领域，则 𝑥∗为 (𝑃)的全局最优解
3）若 ∇2𝐿 (𝑥∗) > 0，因为 ∇𝐿 (𝑥∗) = 0，所以 𝑥∗为 𝐿 (𝑥), (𝑃) 的严格局部最优解
具体地，∇2𝐿 (𝑥∗) > 0，则 𝑑𝑇∇2𝐿 (𝑥∗)𝑑 > 0,∀𝑑 ≠ 0，往任意方向走，函数值都会上升。
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因为有约束，所以只需要在可行的方向上满足 𝑑𝑇∇2𝐿 (𝑥∗)𝑑 > 0即可。
那么我们希望去掉 𝐹1(𝑥∗)中目标函数值会上升的方向。

→ 𝑑𝑇∇2𝐿 (𝑥∗)𝑑 > 0,∀𝑑 ∈ 𝐹1(𝑥∗)，其中 𝐹1(𝑥∗) =
{
𝑑 |

∇𝑔𝑖 (𝑥∗)𝑇 𝑑 ⩽ 0, 𝑖 ∈ 𝐼
∇ℎ𝑖 (𝑥∗)𝑇 𝑑 = 0, 𝑖 = 1, · · · 𝑙

}
当 𝑖 ∈ 𝐼, 𝑔𝑖 (𝑥∗) = 0, 𝜆𝑖𝑔𝑖 (𝑥∗) = 0（由 KKT条件），则 𝜆𝑖 可以为 0或者大于 0。
若 𝜆𝑖 > 0, 𝑖 ∈ 𝐼，我们不想要这部分。

𝐼+ = {𝑖 | 𝜆𝑖 > 0, 𝑖 ∈ 𝐼}

𝐼0 = {𝑖 | 𝜆𝑖 = 0, 𝑖 ∈ 𝐼}

所以 𝐹2 (𝑥∗) =

𝑑 |
∇𝑔𝑖 (𝑥∗) ⩽ 0 𝑖 ∈ 𝐼0

∇𝑔1 (𝑥∗)𝑇 𝑑 = 0 𝑖 ∈ 𝐼+

∇ℎ𝑖 (𝑥∗)𝑇 𝑑 = 0, 𝑖 ∈ 1, · · · 𝑙

 ⊆ 𝐹1 (𝑥∗)

（二）假设 𝑥∗满足 KKT条件，𝐿 (𝑥) = 𝑓 (𝑥) +
∑
𝜆𝑖𝑔𝑖 (𝑥) +

∑
𝜇𝑖ℎ𝑖 (𝑥)

易知 ∇𝐿 (𝑥∗) = 0。已知 𝑑𝑇∇2𝐿 (𝑥∗)𝑑 > 0,∀𝑑 ∈ 𝐹2(𝑥∗)，则 𝑥∗为 (𝑃)的严格局部最优解。

证明. 反证法。
设 𝑥∗不是 (𝑃)的严格局部最优解。则存在点列 {𝑥𝑘 }收敛到 𝑥∗。𝑥𝑘 ∈ 𝑆，使 𝑓 (𝑥𝑘 ) ≤ 𝑓 (𝑥∗)。
记方向 𝑑𝑘 = 𝑥𝑘−𝑥∗

∥𝑥𝑘−𝑥∗∥ 是有界点列，则其必有收敛子列。设 𝑑𝑘 收敛到 𝑑，也即 𝑑𝑘 → 𝑑。

令 𝛼𝑘 = ∥𝑥𝑘 − 𝑥∗∥。因为 𝑥𝑘 → 𝑥∗，所以 𝛼𝑘 → 0。则 𝑥𝑘 = 𝑥∗ + 𝛼𝑘𝑑𝑘（也即从 𝑥∗出发，沿着

𝑑𝑘 走 𝛼𝑘）

1) 𝑓 (𝑥𝑘 ) − 𝑓 𝑥∗) = ∇ 𝑓 (𝑥∗)𝑇 (𝑥𝑘 − 𝑥∗) + 1
2∇2 𝑓 (𝑥∗)(𝑥𝑘 − 𝑥∗) + 𝑜(𝛼2

𝑘 ) ≤ 0，−→ 𝛼𝑘∇ 𝑓 (𝑥∗)𝑇𝑑𝑘 +
𝛼2
𝑘

2 𝑑
𝑇
𝑘∇2 𝑓 (𝑥∗)𝑑𝑘 + 𝑜(𝛼2

𝑘 ) ≤ 0
2)𝑔𝑖 (𝑥𝑘 ) − 𝑔𝑖 (𝑥∗) = 𝛼𝑘∇𝑔𝑖 (𝑥∗)𝑇 𝑑𝑘 +

𝛼2
𝑘

2 𝑑
𝑇
𝑘∇2𝑔𝑖 (𝑥∗) 𝑑𝑘 + 𝑜

(
𝛼2
𝑘

)
= 0, 𝑖 ∈ 𝐼

3)ℎ𝑖 (𝑥𝑘 ) − ℎ𝑖 (𝑥∗) = 𝛼𝑘∇ℎ𝑖 (𝑥∗)𝑇 𝑑𝑘 +
𝛼2
𝑘

2 𝑑
𝑇
𝑘∇2ℎ𝑖 (𝑥∗) 𝑑𝑘 + 𝑜

(
𝛼2
𝑘

)
= 0, 𝑖 = 1, . . . , 𝑙

那么，要找一个方向 𝑑，𝑑 ∈ 𝐹2(𝑥∗), 𝑑𝑇∇2 𝑓 (𝑥)𝑑 ≤ 0
对 1)，除以 𝛼𝑘，令 𝑘 → ∞，则 ∇ (𝑥∗)𝑇 𝑑 ≤ 0

对 2)，除以 𝛼𝑘，令 𝑘 → ∞，则 ∇𝑔𝑖 (𝑥∗)𝑇 𝑑 ≤ 0, 𝑖 ∈ 𝐼
对 3)，除以 𝛼𝑘，令 𝑘 → ∞，则 ∇ℎ𝑖 (𝑥∗)𝑇 𝑑 = 0, 𝑖 = 1, . . . , 𝑙
因为 𝑥∗ 是 KKT 点，则 ∇ 𝑓 (𝑥∗) +

∑
𝜆𝑖∇𝑔𝑖 (𝑥∗) +

∑
𝜇𝑖∇ℎ𝑖 (𝑥∗) = 0，则 ∇ 𝑓 (𝑥∗)𝑇 𝑑 +∑

𝜆𝑖∇𝑔𝑖 (𝑥∗)𝑇 𝑑 +
∑
𝜇𝑖∇ℎ𝑖 (𝑥∗)𝑇 𝑑 = 0

因为 ∇ 𝑓 (𝑥∗)𝑇 𝑑 ≤ 0，
∑
𝜆𝑖∇𝑔𝑖 (𝑥∗)𝑇 𝑑 ≤ 0，

∑
𝜇𝑖∇ℎ𝑖 (𝑥∗)𝑇 𝑑 = 0，所以 𝑖 : ∇ 𝑓 (𝑥∗)𝑇 𝑑 = 0，

𝜆𝑖∇𝑔𝑖 (𝑥∗)𝑇 𝑑 = 0 −→ 𝑖 ∈ 𝐼+, 𝜆𝑖 > 0, 𝑖𝑖 : ∇𝑔𝑖 (𝑥∗)𝑇 𝑑 = 0

𝑖𝑣 : ∇ℎ𝑖 (𝑥∗)𝑇 𝑑 = 0 −→ 𝑖 ∈ 𝐼0, 𝜆 = 0, 𝑖𝑖𝑖 : ∇𝑔𝑖 (𝑥∗)𝑇 𝑑 ≤ 0
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由 𝑖𝑖, 𝑖𝑖𝑖, 𝑖𝑣 −→ 𝐹2(𝑥∗)，可知 𝑑 ∈ 𝐹2(𝑥∗)
接下来，找 𝑑𝑇∇2 𝑓 (𝑥)𝑑 ≤ 0。因为

∇2𝐿 (𝑥∗) = ∇2 𝑓 (𝑥∗) +
∑

𝜆𝑖∇2𝑔𝑖 (𝑥∗) +
∑

𝜇𝑖∇2ℎ𝑖 (𝑥∗)

令 1) +
∑
𝜆𝑖2) +

∑
𝜇𝑖3)k可得：

𝛼𝑘

(
∇ 𝑓 (𝑥∗)𝑇 𝑑𝑘 +

∑
𝜆𝑖∇𝑔𝑖 (𝑥∗)𝑇 𝑑𝑘 +

∑
𝜇𝑖∇ℎ𝑖 (𝑥∗)𝑇 𝑑𝑘

)
+𝛼𝑘2

(
𝑑𝑇𝑘∇2 𝑓 (𝑥∗) 𝑑𝑘 +

∑
𝜆𝑖𝑑

𝑇
𝑘∇2𝑔𝑖 (𝑥∗) 𝑑𝑘 +

∑
𝜇𝑖𝑑

𝑇
𝑘∇2ℎ𝑖 (𝑥∗) 𝑑𝑘

+𝑜
(
𝛼2
𝑘

)
⩽ 0

整理，有

𝛼𝑘 (∇ 𝑓 (𝑥∗) +
∑

𝜆𝑖∇𝑔𝑖 (𝑥∗) +
∑

𝜇𝑖ℎ𝑖 (𝑥∗))𝑇𝑑𝑘 +
𝛼2
𝑘

2
𝑑𝑇𝑘∇2𝐿 (𝑥∗) 𝑑𝑘 +𝑂

(
𝛼2
𝑘

)
≤ 0

由 KKT条件，∇ 𝑓 (𝑥∗) +
∑
𝜆𝑖∇𝑔𝑖 (𝑥∗) +

∑
𝜇𝑖ℎ𝑖 (𝑥∗) = 0所以 1

2𝑑
𝑇
𝑘∇2𝐿 (𝑥∗) 𝑑𝑘 +

𝑂(𝛼2
𝑘)

𝛼2
𝑘

≤ 0。
令 𝑘 → ∞，则 𝑑𝑇∇2𝐿 (𝑥∗) 𝑑 ≤ 0，则 ∃𝑑 ∈ 𝐹2(𝑥∗)使 𝑑𝑇∇2𝐿 (𝑥∗) 𝑑 ≤ 0，矛盾。

所以 𝑥∗ 是 (𝑃) 的严格局部最优解（二阶充分条件）。若 𝑑𝑇∇2𝐿 (𝑥∗) 𝑑 > 0,∀𝑑 ∈ 𝐹1(𝑥∗)，
则 𝑥∗是 (𝑃) 的严格局部最优解。
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6 约束优化问题（三）罚函数法

基本思想：通过求解一系列无约束优化问题，最终达到求解约束优化的目的。

6.1 只有等式约束的优化问题

min 𝑓 (𝑥)

s.t. ℎ𝑖 (𝑥) = 0, 𝑖 = 1, · · · , 𝑙

记问题为 (𝑃)，可行集为 𝑆。

• 惩罚项
在取走约束之后，需要尽可能保留约束的信息，这里通过构造惩罚项 𝑝(𝑥) 实现。如
果 𝑥 ∈ 𝑆，不进行任何惩罚；如果 𝑥 ∉ 𝑆 → ℎ𝑖 (𝑥) ≠ 0，需要进行惩罚。常用的惩罚项
设置：

𝑝(𝑥) =
𝐿∑
𝑖=1

ℎ2
𝑖 (𝑥) =


0, ⇔ 𝑥 ∈ 𝑆,

> 0, ⇔ 𝑥 ∉ 𝑆.

• 惩罚项的目的是帮助我们构造罚函数，则可以有：

P(𝑥, 𝜎) = 𝑓 (𝑥) + 𝜎𝑝(𝑥).

其中 𝜎为罚参数。

• 进一步，产生无约束优化问题：

min
𝑥
P(𝑥, 𝜎) = 𝑓 (𝑥) + 𝜎

𝐿∑
𝑖=1

ℎ2
𝑖 (𝑥).

为了尽快求解，直观地，把 𝜎设大就可以。但是通常来说不会这样做。而是一步步来：

(𝜎1, 𝑥1) → (𝜎2, 𝑥2) → 𝑥∗

分析：

min𝑥∈𝑆 = min𝑥∈𝑆{ 𝑓 (𝑥) + 𝜎𝑝(𝑥)} 是成立的，因为此时后面的 𝑝(𝑥) 为 0。进一步，考虑
min𝑥∈R𝑛{ 𝑓 (𝑥) + 𝜎𝑝(𝑥)},则此时，

min
𝑥∈𝑆

≥ min
𝑥∈R𝑛

{ 𝑓 (𝑥) + 𝜎𝑝(𝑥)}

换言之，构造出的无约束优化问题是原先问题 (𝑃) 的下界。
记 𝜃 (𝜎) = min𝑥∈R𝑛{ 𝑓 (𝑥) + 𝜎𝑝(𝑥)}，可知 𝜃 (𝜎)为 (𝑃)的最优值（𝑣(𝑃)）提供下界。
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我们希望这个下界越大越好，因此，目标是 max𝜎 𝜃 (𝜎)。
取 𝜎1 < 𝜎2，则：

𝑓 (𝑥) + 𝜎1𝑝(𝑥) ≤ 𝑓 (𝑥) + 𝜎2𝑝(𝑥)

min
𝑥
{ 𝑓 (𝑥) + 𝜎1𝑝(𝑥)} ≤ min

𝑥
{≤ 𝑓 (𝑥) + 𝜎2𝑝(𝑥)}

𝜃 (𝜎1) ≤ 𝜃 (𝜎2)

可知这是个单调增的函数。目标是 max𝜎 𝜃 (𝜎) 时，等价于 lim𝜎→∞ 𝜃 (𝜎)。

例 6.1.
min 𝑥1 + 𝑥2

s.t. 𝑥2 − 𝑥2
1 = 0

求解：

P(𝑥, 𝜎) = 𝑥1 + 𝑥2 + 𝜎(𝑥2 − 𝑥2
1)2

min𝑥 P(𝑥, 𝜎)，令 ∇𝑥P(𝑥, 𝜎) = 0，也即
𝜕P(𝑥, 𝜎)
𝜕𝑥1

= 1 + 2𝜎(𝑥2 − 𝑥2
1) (−2𝑥1) = 0,

𝜕P(𝑥, 𝜎)
𝜕𝑥2

= 1 + 2𝜎(𝑥2 − 𝑥2
1) = 0.

解得：

𝑥1(𝜎) = −1

2

𝑥2(𝜎) = 1
4 − 1

2𝜎

(Remember to check the Hesse matrix ∇2
𝑥P(𝑥, 𝜎) > 0.)

令 𝜎 → ∞, 𝑥(𝜎) → 𝑥∗ = ( −1
2 ,

1
4 )。

例 6.2.
min 𝑓 (𝑥) = 1

2
(𝑥2

1 + 𝑥2
2)

s.t. 𝑥1 − 1 = 0

其中最优解 𝑥∗ = (1, 0)
用罚函数方法，则

min
1
2
(𝑥2

1 + 𝑥2
2) +

𝜎𝑘
2
(𝑥1 − 1)2 = 𝑓𝑘 (𝑥)

∇ 𝑓𝑘 (𝑥) =
[
(1 + 𝜎𝑘 )𝑥1 − 𝜎𝑘

𝑥2

]
=

[
0
0

]
⇒ 𝑥𝑘 =

[
𝜎𝑘

1+𝜎𝑘

0

]
⇒ 𝜎𝑘 −→ ∞ ⇒ 𝑥𝑘 =

[
1
0

]
此外，考虑其 Hesse矩阵，

∇2 𝑓𝑘 (𝑥) =
(
1 + 𝜎𝑘 0

0 1

)
> 0

是正定的。那么就是凸优化问题，求解一阶条件即有全局最优。
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实现罚函数方法的框架

Step0. 取初始点 𝑥0, 𝜎1 > 0, 𝜖 > 0, 𝑘 := 1
Step1. 以 𝑥𝑘−1为初始点，求解无约束优化问题 min{ 𝑓 (𝑥) + 𝜎𝑘 𝑝(𝑥)}，得到解 𝑥𝑘

Step2. 若 𝜎𝑘 𝑝(𝑥𝑘 ) ≤ 𝜖，则终止
Step3. 更新 𝜎𝑘+1 > 𝜎𝑘 ; 𝑘 := 𝑘 + 1，转到 Step1
一些更新 𝜎𝑘+1的策略：

1) 𝜎𝑘+1 = 𝛽𝜎𝑘，𝛽 > 1为固定常数
2) 增大幅度取决于 P(𝑥, 𝜎) 的求解难度，比如，
易解时，𝜎𝑘+1 = 10𝜎𝑘；难解时，𝜎𝑘+1 = 2𝜎𝑘。

定理 15. 设 𝑥𝑘 是 min𝑥{ 𝑓 (𝑥) + 𝜎𝑘 𝑝(𝑥)}的全局最优解，则可以有三个点列：
• {P(𝑥𝑘 , 𝜎𝑘 )}是递增的，因为 P(𝑥𝑘 , 𝜎𝑘 ) = minP(𝑥, 𝜎𝑘 ) = 𝜃 (𝜎𝑘 )
• {𝑝(𝑥𝑘 )}是递减的
• { 𝑓 (𝑥𝑘 )}是递增的

证明很直观，此处略过。

定理 16. 𝑥𝑘 是外点罚函数最优化问题 (𝑄𝑘 )的最优解，当 𝜎𝑘 −→ ∞，则序列
{
𝑥𝑘

}
的每

一个极限点都是原问题 (𝑄0) 的最优解。
隐含条件：(1)有最优解；(2)最优值有限

证明. 设 𝑥是 (𝑄0)的（全局）最优解，即 𝑓 (𝑥) ≤ 𝑓 (𝑥),∀𝑥 ∈
{
ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, · · · ,

}
。因

为 𝑥𝑘 是是 (𝑄𝑘 )的（全局）最优解，因此有

𝑓
(
𝑥𝑘

)
+ 𝜎𝑘

2




ℎ (
𝑥𝑘

)


2
⩽ 𝑓 (𝑥) + 𝜎𝑘

2
∥ℎ(𝑥)∥2 = 𝑓 (𝑥) (∗)

整理上式，得：
𝜎𝑘
2




ℎ (
𝑥𝑘

)


2
≤ 𝑓 (𝑥) − 𝑓 (𝑥𝑘 )


ℎ (

𝑥𝑘
)


2

≤
2
[
𝑓 (𝑥 − 𝑓 (𝑥𝑘 ))

]
𝜎𝑘

(∗∗)

设 𝑥𝑘 是
{
𝑥𝑘

}
的一个极限，(∗∗) 两边取极限 (𝑘 −→ ∞)，则

0 ≤



ℎ (

𝑥𝑘
)


2

≤ lim
𝑘→∞

2 [ 𝑓 (𝑥 − 𝑓 (𝑥∗))]
𝜎𝑘

= 0

则 𝑥∗是可行解。

(∗) 两边取极限，
𝑓 (𝑥∗) ≤ 𝑓 (𝑥∗) + lim

𝑘→∞

𝜎𝑘
2




ℎ (
𝑥𝑘

)


2
≤ 𝑓 (𝑥)

则 𝑥∗是 (𝑄0)的最优解。
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定理 17. 设 𝑥𝑘 满足 ∇𝑥P(𝑥, 𝜎𝑘 ) = 0，有 {𝑥𝑘 }，𝑥 是 {𝑥𝑘 }的聚点。设 𝑥 处的约束函数梯

度 ∇ℎ𝑖 (𝑥), 𝑖 = 1, · · · , 𝑙 线性无关，则是 (𝑃) 的 KKT点。

证明.

P(𝑥, 𝜎) = 𝑓 (𝑥) + 𝜎𝑝(𝑥) = 𝑓 (𝑥) + 𝜎
∑

ℎ2
𝑖 (𝑥)

∇𝑥P(𝑥𝑘 , 𝜎𝑘 ) = ∇ 𝑓 (𝑥𝑘 ) + 2𝜎𝑘
𝐿∑
𝑖=1

∇ℎ𝑖 (𝑥𝑘 )∇ℎ𝑖 (𝑥𝑘 ) = 0 (#)

𝐿∑
𝑖=1

∇ℎ𝑖 (𝑥𝑘 )∇ℎ𝑖 (𝑥) = − 1
2𝜎

∇ 𝑓 (𝑥𝑘 )

令 𝑘 → ∞,
∑𝐿

𝑖=1 ∇ℎ𝑖 (𝑥𝑘 )∇ℎ𝑖 (𝑥) = 0，则此时 ℎ𝑖 (𝑥) = 0, 𝑖 = 1, · · · , 𝑙，故 𝑥是 (𝑃) 的可行点。
记 𝜆𝑘𝑖 = 2𝜎𝑘ℎ𝑖 (𝑥𝑘 )。则 (#)变为

∇ 𝑓 (𝑥𝑘 ) +
∑

𝜆𝑘𝑖 ∇ℎ𝑖 (𝑥𝑘 ) = 0

由于 ∇ℎ𝑖 (𝑥), 𝑖 = 1, · · · , 𝑙线性无关，当 𝑘充分大时，∇ℎ𝑖 (𝑥𝑘 ), 𝑖 = 1, · · · , 𝑙线性无关。因此，令
𝑘 → ∞，∇ 𝑓 (𝑥) +

∑
𝜆𝑖∇ℎ𝑖 (𝑥) = 0；又因为已知 ∇ℎ𝑖 (𝑥), 𝑖 = 1, · · · , 𝑙，因此 KKT条件成立。

6.2 一般罚函数方法

考虑优化问题：
min 𝑓 (𝑥)
s.t. ℎ 𝑗 (𝑥) = 0 𝑗 = 1, · · · 𝑞

𝑔𝑖 (𝑥) ≤ 0 𝑖 = 1, · · · 𝑝

min 𝑓 (𝑥) + 𝜎𝑘
2



𝑔+(𝑥)

2 + 𝜎𝑘
2
∥ℎ(𝑥)∥2 = 𝑓𝑘 (𝑥)

其中 

𝑔+(𝑥)

2
= 𝑚𝑎𝑥 {0, 𝑔𝑖 (𝑥)}

∇ 𝑓𝑘 (𝑥) = ∇ 𝑓 (𝑥) + 𝜎𝑘
𝑝∑
𝑖=1

𝑔+𝑖 (𝑥)∇𝑔𝑖 (𝑥) + 𝜎𝑘
𝑞∑
𝑗=1

ℎ 𝑗 (𝑥)∇ℎ 𝑗 (𝑥)

例 6.3. 𝑔(𝑥) = 𝑥 ≤ 0
∥𝑔+(𝑥)∥2 = ∥ max {0, 𝑥}




2

∇


𝑔+(𝑥)

2

=

{
2𝑥 𝑥 ⩾ 0
0 𝑥 > 0

2𝑔+(𝑥)∇𝑔(𝑥) =
{

2𝑥 𝑥 ⩾ 0
0 𝑥 > 0
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7 约束优化问题（四）增广拉格朗日方法（乘子法）

7.1 只有等式约束的优化问题

min 𝑓 (𝑥)

s.t. ℎ𝑖 (𝑥) = 0, 𝑖 = 1, · · · , 𝑙

记问题为 (𝑃)，可行集为 𝑆。

罚函数法：

min
𝑥
P(𝑥, 𝜎) = 𝑓 (𝑥) + 𝜎

𝐿∑
𝑖=1

ℎ2
𝑖 (𝑥).

若对某个𝜎𝑘，求解min𝑥 P(𝑥, 𝜎𝑘 )问题，得到 𝑥𝑘，算法终止。此时
∑𝐿

𝑖=1 ℎ
2
𝑖 (𝑥𝑘 ) = 0 (𝑥𝑘 ∈ 𝑆)。

由

∇𝑥P(𝑥𝑘 , 𝜎𝑘 ) = ∇ 𝑓 (𝑥𝑘 ) + 2𝜎𝑘
𝐿∑
𝑖=1

ℎ𝑖 (𝑥𝑘 )∇ℎ𝑖 (𝑥𝑘 ) = 0

可得 ∇ 𝑓 (𝑥𝑘 ) = 0。在这种 case下，不需要迭代到 𝑘 → ∞。
如果构造一个函数：

𝐿𝐴 (𝑥, 𝜆, 𝜎) = 𝑓 (𝑥) +
∑

𝜆𝑖ℎ𝑖 (𝑥) + 𝜎
∑

ℎ2
𝑖 (𝑥)

其兼备了拉格朗日函数和罚函数的好处。𝜎
∑
ℎ2
𝑖 (𝑥)是增广项，𝜆𝑖是乘子，而我们对其求梯

度的时候很容易出现 KKT条件所需要的东西。现在无约束优化问题就是 min𝑥 𝐿𝐴 (𝑥, 𝜆, 𝜎)。

实现乘子法的框架

Step0. 取 𝑥0, 𝜆1, 𝜎1 > 0, 𝜖 > 0, 𝑘𝑖 = 1
Step1. 以 𝑥𝑘−1为初始点，求解 min𝑥 𝑓 (𝑥) +

∑
𝜆𝑖ℎ𝑖 (𝑥) + 𝜎

∑
ℎ2
𝑖 (𝑥)，得解 𝑥𝑘

Step2 : 若
∑
ℎ2
𝑖 (𝑥𝑘 ) ≤ 𝜖，终止；

Step3 : 更新 𝜆𝑘+1, 𝜎𝑘+1(> 𝜎𝑘 ), 𝑘 := 𝑘 + 1转 Step1
如何更新 𝜆𝑘+1? 由于 𝑥𝑘 满足 ∇𝐿𝐴 (𝑥𝑘 , 𝜆𝑘 , 𝜎𝑘 ) = 0，也即

∇ 𝑓 (𝑥𝑘 ) +
∑

𝜆𝑘𝑖 ∇ℎ𝑖 (𝑥𝑘 ) + 2𝜎𝑘
∑

ℎ𝑖 (𝑥𝑘 )∇ℎ𝑖 (𝑥𝑘 ) = 0

∇ 𝑓 (𝑥𝑘 ) +
∑

(𝜆𝑘𝑖 + 2𝜎𝑘ℎ𝑖 (𝑥𝑘 ))∇ℎ𝑖 (𝑥𝑘 ) = 0

因此，可以根据策略 𝜆𝑘+1
𝑖 := 𝜆𝑘𝑖 + 2𝜎𝑘ℎ𝑖 (𝑥𝑘 ), 𝑖 = 1, · · · , 𝑙 来更新参数。
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定理 18. 设 𝑥∗ 是 (𝑃) 的 KKT 点，𝜆∗，且 𝑥∗ 处有二阶充分条件，则存在 𝜎∗ > 0，当
𝜎 ≥ 𝜎∗时，𝑥∗是 min𝑥 𝐿𝐴 (𝑥, 𝜆∗, 𝜎)的严格局部最优解。

证明上述定理首先需要一个引理：

引理 7.1. 已知对称矩阵 𝐴𝑛×𝑛 以及矩阵 𝐵𝑚×𝑛，若对于任意满足 𝐵𝑧 = 0 的非零向量 𝑧，

均有 𝑧⊤𝐴𝑧 > 0，则存在 𝜎∗ > 0，当 𝜎 ≥ 𝜎∗时，𝐴 + 𝜎𝐵⊤𝐵正定。

证明. 只要证明 𝑧⊤(𝐴 + 𝜎𝐵⊤𝐵)𝑧 > 0,∀𝑧 ∈ 𝑘 = {𝑧 | | |𝑧 | | = 1}
K是一个有界闭集合。𝐾 = 𝐾1 ∪ 𝐾2。𝐾1 = {𝑧 ∈ 𝐾 | 𝑧⊤𝐴𝑧 > 0}, 𝐾2 = {𝑧 ∈ 𝐾 | 𝑧⊤𝐴𝑧 ≤

0},∀𝑧 ∈ 𝐾1。

• 𝑧⊤𝐴𝑧 + 𝜎𝑧⊤𝐵⊤𝐵𝑧 > 0,∀𝜎 > 0,∀𝑧 ∈ 𝐾1

• 任取 𝑧 ∈ 𝐾2，则 𝐵𝑧 ≠ 0, 𝑧⊤𝐵⊤𝐵𝑧 > 0

min
𝑧∈𝐾2

{𝑧⊤𝐴𝑧 + 𝜎𝑧⊤𝐵⊤𝐵𝑧} ≥ min
𝑧∈𝐾2

𝑧⊤𝐴𝑧 + 𝜎min
𝑧∈𝐾2

𝑧⊤𝐵⊤𝐵𝑧

因为 𝐾2有界闭，则 min𝑧∈𝐾2 𝑧
⊤𝐴𝑧 + 𝜎min𝑧∈𝐾2 𝑧

⊤𝐵⊤𝐵𝑧 = 𝑎 + 𝜎𝑏, 𝑏 > 0。
要令 𝑎 + 𝜎𝑏 > 0，只需要 𝜎∗ > −𝑎

𝑏 。

接下来继续证定理。

证明. 由于 𝑥∗是 (𝑃) 的 KKT点，且二阶充分条件成立，则

∇ 𝑓 (𝑥∗) +
∑

𝜆∗𝑖 ∇ℎ𝑖 (𝑥∗) = 0, ℎ𝑖 (𝑥∗) = 0, 𝑖 = 1, · · · , 𝑙

𝑑⊤(∇2 𝑓 (𝑥∗) + 𝜎𝜆∗𝑖 ∇2ℎ𝑖 (𝑥∗))𝑑 > 0,∀𝑑 ∈ {𝑑 ≠ 0 | ∇ℎ𝑖 (𝑥∗)⊤𝑑 = 0}(#)

结论只需要证明：1) ∇𝐿𝐴 (𝑥∗, 𝜆∗, 𝜎) = 0, 2) ∇2𝐿𝐴 (𝑥∗, 𝜆∗, 𝜎) > 0
对于 1):

∇𝐿𝐴 (𝑥∗, 𝜆∗, 𝜎) = ∇ 𝑓 (𝑥∗) +
∑

𝜆∗𝑖 ∇ℎ𝑖 (𝑥∗) + 2𝜎𝑘
∑

ℎ𝑖 (𝑥∗)∇ℎ𝑖 (𝑥∗) = 0

对于 2)

∇2𝐿𝐴 (𝑥∗, 𝜆∗, 𝜎) = ∇2 𝑓 (𝑥∗) +
∑

𝜆∗𝑖 ∇2ℎ𝑖 (𝑥∗) + 2𝜎
∑

ℎ𝑖 (𝑥∗)∇2ℎ𝑖 (𝑥∗) + 2𝜎
∑

∇ℎ𝑖 (𝑥∗)∇ℎ𝑖 (𝑥∗)⊤

= ∇2 𝑓 (𝑥∗) +
∑

𝜆∗𝑖 ∇2ℎ𝑖 (𝑥∗) + 2𝜎
∑

∇ℎ𝑖 (𝑥∗)∇ℎ𝑖 (𝑥∗)⊤

记 𝐴 = ∇2 𝑓 (𝑥∗) +
∑
𝜆∗𝑖 ∇2ℎ𝑖 (𝑥∗)，𝐵⊤ = (∇ℎ1(𝑥∗), · · · ,∇ℎ𝑙 (𝑥∗))。

(#)即 𝑑⊤𝐴𝑑 > 0,∀{𝑑 ≠ 0 | 𝐵𝑑 = 0} ⇒ ∇2𝐿𝐴 (𝑥∗, 𝜆∗, 𝜎) = 𝐴 + 2𝜎𝐵⊤𝐵 □
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7.2 一般情况

min 𝑓 (𝑥)
𝑠.𝑡. 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, · · · , 𝑚

• 𝑔𝑖 (𝑥) + 𝑠2 = 0,
𝐿𝐴 = 𝑓 (𝑥) +

∑
𝜆𝑖 (𝑔𝑖 (𝑥) + 𝑠2) + 𝜎

∑
(𝑔𝑖 (𝑥) + 𝑠2)2

• 𝑔𝑖 (𝑥) + 𝑠𝑖 = 0, 𝑠𝑖 ≥ 0

𝐿𝐴 = 𝑓 (𝑥) +
∑

𝜆𝑖 (𝑔𝑖 (𝑥) + 𝑠𝑖) + 𝜎
∑

(𝑔𝑖 (𝑥) + 𝑠𝑖)2
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8 对偶理论

考虑如下一般形式约束优化问题 (𝑃)：

min 𝑓 (𝑥)
𝑠.𝑡. 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, · · · , 𝑚

ℎ𝑖 (𝑥) = 0 𝑖 = 1, · · · , 𝑙
𝑥 ∈ 𝑋 = 𝑅𝑛

记可行集为：𝑆 = {𝑥 ∈ 𝑋 | 𝑔𝑖 (𝑥) ⩽ 𝑣, 𝑖 = 1, . . . , 𝑚; ℎ𝑖 (𝑥) = 𝑣, 𝑖 = 1, · · · , 𝑙}
有 (𝑃)，为什么要构建对偶问题 (𝐷)?
用处：

(1)若 (𝑃) 非凸，很难求解⇒寻找一个与 (𝑃) 关系紧密且容易求解的问题（如 (𝐷)）
(2)

min 𝑐𝑇𝑥

𝑠.𝑡.𝐴𝑥 = 𝑏

𝑥 ≥ 0

对于上述 (𝑃)，求解可用内点法、单纯形法

min 𝑏𝑇 𝑦

𝑠.𝑡.𝐴𝑇 𝑦 ≤ 𝑐

对于上述 (𝐷)，求解可用对偶单纯形法。注意此处 𝑦∗为影子价格 shadow price。
(3)鲁棒优化，锥优化

8.1 拉格朗日函数及其对偶

min 𝑓 (𝑥)
𝑠.𝑡. 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, · · · , 𝑚

ℎ𝑖 (𝑥) = 0, 𝑖 = 1, · · · , 𝑙
𝑥 ∈ 𝑋 = 𝑅𝑛

引进拉格朗日函数，为：

𝐿 (𝑥, 𝜆, 𝜇) = 𝑓 (𝑥) +
𝑚∑
𝑖=1

𝜆𝑖𝑔𝑖 (𝑥) +
𝑙∑
𝑖=1

𝜇𝑖ℎ𝑖 (𝑥)
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其拉格朗日对偶函数（dual function）为：

𝑑 (𝜆, 𝜇) = min

{
𝑓 (𝑥) +

𝑚∑
𝑖=1

𝜆𝑖𝑔𝑖 (𝑥) +
𝑙∑
𝑖=1

𝜇𝑖ℎ𝑖 (𝑥) | 𝑥 ∈ 𝑋
}

其中 𝑥 ∈ 𝑋 代表约束。
对于 ∀(𝜆, 𝜇)，𝜆 ≥ 0，有：

min
𝑥∈𝑆

{
𝑓 (𝑥) +

𝑚∑
𝑖=1

𝜆𝑖𝑔𝑖 (𝑥) +
𝑙∑
𝑖=1

𝜇𝑖ℎ𝑖 (𝑥) | 𝑥 ∈ 𝑋
}

𝑆 ⊑ 𝑋

𝑑 (𝜆, 𝜇) = min
𝑥∈𝑋

{
𝑓 (𝑥) +

∑
𝜆𝑖𝑔𝑖 (𝑥) +

∑
𝜇𝑖ℎ𝑖 (𝑥)

}
≤ min

𝑥∈𝑆

{
𝑓 (𝑥) +

∑
𝜆𝑖𝑔𝑖 (𝑥) +

∑
𝜇𝑖ℎ𝑖 (𝑥)

}
X contains more content than S, thus it is more likely to be chosen as the minimum.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

𝜆𝑖≥0,𝑔𝑖 (𝑥)≤0,ℎ𝑖 (𝑥)=0
≤ min

𝑥∈𝑆
{ 𝑓 (𝑥)}

则对 ∀(𝜆, 𝜇), 𝜆 > 0,必有 𝑑 (𝜆, 𝜇) ≤ min𝑥∈𝑆 { 𝑓 (𝑥)} = 𝑣(𝑝)，即 𝑑 (𝜆, 𝜇)是 𝑣(𝑝)的下界。下
界越大越好（越接近 𝑣(𝑝)越好）。
拉格朗日对偶问题（也有其他的对偶）

(𝐷) max 𝑑 (𝜆, 𝜇).

s.t. 𝜆1 ⩾ 0, 𝑖 = 1, . . . 𝑚

𝐿 (𝑥, 𝜆, 𝜇) = 𝑓 (𝑥) +
∑

𝜆𝑖𝑔𝑖 (𝑥) +
∑

𝜇𝑖ℎ𝑖 (𝑥)

(D): max
𝜆≥𝑣,𝜇

min
𝑥∈𝑋

𝐿 (𝑥, 𝜆, 𝜇)

先对 𝐿 中 𝑥求最小，再对 𝜆, 𝜇求最大。⇒换一下先后顺序

(𝑃) min
𝑥∈𝑋

max
𝜆⩾0𝜇

𝐿 (𝑥, 𝜆, 𝜇)

𝑚𝑎𝑥𝜆≥0

{
𝑓 (𝑥) +

∑
𝜆𝑖𝑔𝑖 (𝑥) +

∑
𝜇𝑖ℎ𝑖 (𝑥)

}
(∗)

什么时候不会 max到 +∞?⇒当 𝑔𝑖 (𝑥) ≤ 0, ℎ𝑖 (𝑥) = 0
此时 (∗) 为：

=

{
𝑓 (𝑥) if 𝑔𝑖 (𝑥) ≤ 0 ℎ𝑖 (𝑥) = 0
+∞ other wise.

然后，最小化 𝑓 (𝑥)：min 𝑓 (𝑥) s.t.𝑔𝑖 (𝑥) ≤ 0 ℎ𝑖 (𝑥) = 0 𝑥 ∈ 𝑋
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8.2 线性规划的对偶问题

min 𝑐𝑇𝑥

𝑠.𝑡. 𝐴𝑥 = 𝑏

𝑥 ≥ 0

其中 𝑐 ∈ R𝑛, 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚

首先：

𝐿 (𝑥, 𝜇) = 𝑐𝑇𝑥 + 𝜇𝑇 (𝑏 − 𝐴𝑥)

𝑑 (𝜇) = min
𝑥∈𝑋

{
𝑐⊤𝑥 + 𝜇⊤𝑏 − 𝜇⊤𝐴𝑥

}
= min

𝑥∈𝑋

{(
𝑐 − 𝐴⊤𝜇

)⊤
𝑥 + 𝑏⊤𝜇

}
= min

𝑥⩾0

{(
𝐶 − 𝐴⊤𝜇

)𝑇
𝑥 + 𝑏⊤𝜇

}
除非 𝑐 − 𝐴⊤𝜇 ≫ 0, min才会取到最小。

=

{
𝑏⊤𝜇, if 𝑐 − 𝐴⊤𝜇 ⩾ 0
−∞, otherwise

则 (𝐷) 即 max 𝑑 (𝜇)，也即
max 𝑏⊤𝜇
𝑠.𝑡 · 𝐴⊤𝜇 ≤ 𝐶
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9 弱对偶定理与强对偶定理

9.1 弱对偶定理

若 𝑣(𝑃) 为原问题 (𝑃) 的最优值，𝑣(𝐷) 为对偶问题 (𝐷) 的最优值，则 𝑣(𝐷) ≤ 𝑣(𝑃)，
𝑑 (𝜆, 𝜇) ≤ 𝑣(𝐷) ≤ 𝑣(𝑃) ≤ 𝑓 (𝑥)

9.1.1 弱对偶定理的推论（一）

假设 𝑥 ∈ 𝑆，
(
𝜆̄, 𝜇̄

)
, 𝜆̄ ≥ 0，且 𝑑 (𝜆̄, 𝜇̄) = 𝑓 (𝑥)

则 𝑣(𝑃) = 𝑣(𝐷)，且 𝑥，(𝜆̄, 𝜇̄) 是 (𝑃) 与 (𝐷) 的最优解。

9.2 弱对偶定理的推论（二）

若 𝑣(𝑃) = −∞，则对 ∀(𝜆, 𝜇), 𝜆 ≥ 0，有 𝑑 (𝜆, 𝜇) = −∞
若 𝑣(𝐷) = ∞，则 (𝑃) 无可行解。（此时 𝑣(𝑃) = +∞）
Duality gap:𝑣(𝑃) − 𝑣(𝐷)

9.3 强对偶定理

9.3.1 强对偶定理的内容

假设：1）集合 𝑋 为非空凸集， 𝑓 (𝑥) 及 𝑔𝑖 (𝑥), 𝑖 = 1, · · · , 𝑚为凸函数；ℎ𝑖 (𝑥), 𝑖 = 1, · · · , 𝑙
为线性函数。⇒ (𝑃) 为凸优化问题。

2）假设存在 𝑥 ∈ 𝑋 使 𝑔𝑖 (𝑥) < 0, 𝑖 = 1, · · · , 𝑚，ℎ𝑖 (𝑥) = 0, 𝑖 = 1, · · · , 𝑙 （也即 𝑥 为严格可

行点），且 0 ∈int ℎ(𝑥)（0是 ℎ(𝑋) 的内点），其中 ℎ(𝑋) =
{
ℎ1(𝑥), · · · , ℎ1(𝑥)𝑇 , 𝑥 ∈ 𝑋

}
则强对偶成立，也即：

min { 𝑓 (𝑥) |𝑥 ∈ 𝑆} = max {𝑑 (𝜆, 𝜇) |𝜆 ≥ 0, 𝜇}

9.3.2 强对偶定理的证明

证明. 由于 𝑥的存在，(𝑃)有可行点。若 𝑣(𝑝) = −∞，则 𝑑 (𝜆, 𝜇) = −∞,∀(𝜆, 𝜇), 𝜆 ≥ 0若
𝑣(𝑃) = 𝛾(一个有界值)，则不存在 𝑥 ∈ 𝑋 使得

𝑓 (𝑥) < 𝛾 ⇒ 𝑓 (𝑥) − 𝛾 < 0
𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, · · · , 𝑚
ℎ𝑖 (𝑥) = 0, 𝑖 = 1, · · · , 𝑙
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定义 𝐻 =


©­­­«
𝑝

𝑞

𝑟

ª®®®¬ ∈ 𝑅
�����
𝑓 (𝑥) − 𝛾 < 𝑝, 𝑔𝑖 (𝑥) ≤ 𝑞𝑖, 𝑖 = 1, · · · , 𝑚
ℎ𝑖 (𝑥) = 𝛾𝑖, 𝑖 = 1, · · · , 𝑙
𝑥 ∈ 𝑋


则：𝐻 凸且 [0, 0, 0]𝑇 ∉ 𝐻

根据凸集分离定理，则存在法向量 (𝜆0, 𝜆, 𝜇0)𝑇 ≠ 0，使得：

©­­­«
𝜆0

𝜆

𝜇

ª®®®¬
⊤ ©­­­«

𝑝

𝑞

𝑟

ª®®®¬ ≥
©­­­«
𝜆0

𝜆

𝜇

ª®®®¬
⊤ ©­­­«

0
0
0

ª®®®¬ = 0

∀(𝑝, 𝑞, 𝑟)𝑇 ∈ 𝐻,∀(𝑝, 𝑞, 𝑟) ∈ 𝑐𝑙𝐻
所以 𝜆0𝑝 + 𝜆𝑇𝑞 + 𝜇𝑇𝛾 ≥ 0(∗) 则：𝜆0 ≥ 0, 𝜆𝑖 ≥ 0, 𝑖 = 1, · · · , 𝑚
由 (∗) 可得，∀𝑥 ∈ 𝑋

𝜆0( 𝑓 (𝑥) − 𝛾) +
∑

𝜆𝑖𝑔𝑖 (𝑥) +
∑

𝜇𝑖ℎ𝑖 (𝑥) ≥ 0(∗ ∗ ∗)

不妨设 𝜆0 = 0，(∗ ∗ ∗) 即
∑
𝜆𝑖𝑔𝑖 (𝑥) +

∑
𝜇𝑖ℎ𝑖 (𝑥) ≥ 0,∀𝑥 ∈ 𝑋

将 𝑥代入上式，则
∑
𝜆𝑖𝑔𝑖 (𝑥) +

∑
𝜇𝑖ℎ𝑖 (𝑥) ≥ 0其中 𝑔𝑖 (𝑥 < 0),ℎ𝑖 (𝑥) = 0,𝜆𝑖 = 0。

则必有 𝜆_𝑖 = 0, 𝑖 = 1, · · · , 𝑚
(∗ ∗ ∗) 变为

∑
𝜇𝑖ℎ𝑖 (𝑥) ≥ 0,∀𝑥 ∈ 𝑋 (∗∗)

因为 0 ∈intℎ(𝑥)
ℎ(𝑥) =

{(
ℎ1(𝑥), · · · , ℎ𝑙 (𝑥)𝑇

)𝑇
|𝑥 ∈ 𝑋

}
则 ∃𝑥 ∈ 𝑋 使得 ©­­­«

ℎ1(𝑥)
...

ℎ𝑖 (𝑥)

ª®®®¬ =
∑ ©­­­«

−𝑢1

−𝑢2

−𝑢𝑣

ª®®®¬ .
将 𝑥带入 (∗∗)，则 −

∑∑
𝜇2
𝑖 ≥ 0, 𝜇𝑖 = 0，则 (𝜆0, 𝜆1, 𝜇) = 0

所以矛盾。所以 𝜆0 ≠ 0
则，𝜆0必大于 0，𝜆0 > 0
(∗ ∗ ∗) 同除 𝜆0，则 ∀𝑥 ∈ 𝑋 ,

𝑓 (𝑥) − 𝛾 +
∑

𝜆𝑖𝑔𝑖 (𝑥) +
∑

𝜇𝑖ℎ𝑖 (𝑥) ≥ 0

其中 𝜆𝑖 =
𝜆𝑖
𝜆0

≥ 0, 𝜇𝑖 = 𝜇𝑖
𝜆0

所以 ∀𝑥 ∈ 𝑋, 𝑓 (𝑥) +
∑
𝜆𝑖𝑔𝑖 (𝑥) +

∑
𝜇𝑖ℎ𝑖 (𝑥) ≥ 𝛾

所以 𝑑 (𝜆̄, 𝜇̄) ≥ 𝛾 = 𝑣(𝑃)
故 𝑣(𝐷) = 𝑑 (𝜆̄, 𝜇̄) = 𝑣(𝑃)，强对偶成立
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推论 9.1. 对于凸优化问题：
𝑓 (𝑥)及 𝑔𝑖 (𝑥),𝑖 = 1, · · · , 𝑚为凸；ℎ𝑖 (𝑥), 𝑖 = 1, · · · , 𝑙均为线性函数，𝑋凸。若 𝑥∗满足KKT

条件，则 𝑥∗是原问题 (𝑃) 的最优解，且乘子为对偶问题 (𝐷) 的最优解。

证明. 由 KKT条件，对于 𝑥∗,存在 𝜆̄, 𝜇̄使
∇ 𝑓 (𝑥∗) +

∑
𝜆̄𝑖∇𝑔𝑖 (𝑥∗) +

∑
𝜇̄𝑖∇ℎ𝑖 (𝑥∗) = 0 (1)

𝜆̄𝑖 ⩾ 0
𝜆̄𝑖𝑔𝑖 (𝑥∗) = 0

由 (1),𝑥∗是的最小点（凸函数梯度为 0的点）
故 (𝜆̄, 𝜇̄)是 (𝐷) 的最优解，且 𝑣(𝑃) = 𝑣(𝐷)。

注 9.1. 对于凸优化问题，KKT点包含了原问题 (𝑃)的最优解，也包含了对偶问题 (𝐷)
的最优解。若 Slater条件（约束限制条件）成立，则 (𝑃)的最优解是 KKT点，相应乘子为
对偶问题 (𝐷)的最优解。

参考

王燕军,梁治安,崔雪婷. 最优化基础理论与方法 [M].复旦大学出版社, 2011.
崔雪婷老师课程

50

https://space.bilibili.com/507629580

	最优化问题概述
	最优化问题的定义
	最优化问题的基本形式
	最优化问题的可行集

	最优化问题的分类
	无约束/约束优化
	线性/非线性优化
	连续/离散优化
	单目标/多目标优化
	动态规划/确定性优化/随机规划/鲁棒优化


	凸集
	基本概念
	基本性质
	相关引理与定理
	投影定理
	点与凸集的分离定理
	支撑超平面定理
	Farkas引理


	凸函数与凸优化问题
	凸函数的定义
	凸函数的基本性质
	可微凸函数的基本性质
	凸函数与水平集
	凸规划

	无约束问题的最优性条件和算法
	最优性条件
	下降方向
	最优性条件

	一维优化
	基于搜索区间的直接搜索法
	二分法（利用导数）

	多维优化
	坐标轴交替下降法
	梯度下降法(最速下降法)
	牛顿法
	修正牛顿法
	拟牛顿法
	共轭方向法


	约束优化问题（一）最优性条件
	约束优化问题（二）最优性条件
	约束优化问题（三）罚函数法
	只有等式约束的优化问题
	一般罚函数方法

	约束优化问题（四）增广拉格朗日方法（乘子法）
	只有等式约束的优化问题
	一般情况

	对偶理论
	拉格朗日函数及其对偶
	线性规划的对偶问题

	弱对偶定理与强对偶定理
	弱对偶定理
	弱对偶定理的推论（一）

	弱对偶定理的推论（二）
	强对偶定理
	强对偶定理的内容
	强对偶定理的证明



